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hardcore model monomer-dimer model

configurations: independent sets I matchings M

weight: w(I) = λ|I| w(M) = λ|M|

partition function: Z = ΣI:independent sets in G w(I) Z = ΣM:matchings in G w(M)
Gibbs distribution: μ(I) = w(I) / Z μ(M) = w(M) / Z

approximate counting:
sampling:

FPTAS/FPRAS for Z
sampling from μ within TV-distance ε

in time poly(n, log1/ε)

G = (V,E)

undirected 
graph
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λ

λ
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λ

λ
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λ λactivity λ



(d+1)-regular tree

`! 1

v

boundary condition σ :  fixing leaves at level l to be occupied/unoccupied by I

Pr[v 2 I | �]

Decay of Correlation

�c =
dd

(d� 1)(d+1)

hardcore model:

(Weak Spatial Mixing,  WSM)

uniqueness threshold:

• λ ≤ λc ⇔ WSM holds on (d+1)-regular tree ⇔ Gibbs measure is unique

• [Weitz ‘06]: λ < λc ⇒ FPTAS for graphs with max-degree ≤ d+1 

• [Galanis, Štefankovič, Vigoda ‘12; Sly, Sun ‘12]:  λ > λc ⇒ inapproximable unless NP=RP

WSM:   Pr[v∈I | σ] does not depend on σ when l→∞

I ∼μ



regular tree

`! 1

boundary condition σ :  fixing leaf-edges at level l to be occupied/unoccupied by M

Decay of Correlation
(Weak Spatial Mixing,  WSM)

• WSM always holds ⇔ Gibbs measure is always unique

• [Jerrum, Sinclair ’89]:  FPRAS for all graphs 
• [Bayati, Gamarnik, Katz, Nair, Tetali ’08]: FPTAS for graphs with bounded max-degree

WSM:   Pr[e∈M | σ] does not depend on σ when l→∞

monomer-dimer 
model:

Pr[e 2 M | �] e

M ∼μ



CSP (Constraint Satisfaction Problem)
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matchings: variables xi 2 {0, 1}matching constraint
(at-most-1)

degree 
≤ d

degree 
= 2

max-degree ≤ d



CSP (Constraint Satisfaction Problem)
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matchings:

independent sets:

variables xi 2 {0, 1}matching constraint
(at-most-1)

matching constraint
(at-most-1)variables xi 2 {0, 1}

max-degree ≤ d

partition function: Z =
X

~x2{0,1}n satisfying
all constraints

�k~xk1

degree 
≤ d

degree 
= 2



CSP (Constraint Satisfaction Problem)

Boolean
variables

deg ≤ d+1 deg ≤ k+1x1

x2

x3

x4

x5

c1
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c6

c7

Z =
X

~x2{0,1}n satisfying
all constraints

�k~xk1partition function:

at-most-1
constraints
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Hypergraph matching

Z�(H) =
X

M : matching of H

�|M |

H = (V,E)hypergraph vertex set V

hyperedge e 2 E, e ⇢ V

a matching is an subset M⊂E of disjoint hyperedges

µ(M) =
�|M |

Z�(H)

partition 
functions:

Gibbs 
distribution:
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matchings in hypergraphs of max-degree ≤ k+1 and max-edge-size ≤ d+1
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matching

independent set

CSP defined by 
matching(packing) constraint

independent sets in hypergraphs of max-degree ≤ d+1 and max-edge-size ≤ k+1

independent sets:  a subset of non-adjacent vertices 
(to be distinguished with:  vertex subsets containing no hyperedge as subset) 



Known results

• k=1: hardcore model

• d=1: monomer-dimer model

• for λ=1:
• [Dudek, Karpinski, Rucinski, Szymanska 2014]: FPTAS when d=2, k≤2

• [Liu and Lu 2015] FPTAS when d=2, k≤3

Boolean
variables

deg ≤ d+1 deg ≤ k+1x1

x2

x3

x4

x5

c1

c2

c3

c4

c5

c6

c7
at-most-1

constraints

Z =
X

~x2{0,1}n satisfying
all constraints

�k~xk1

partition function:

independent sets of hypergraphs
of max-degree ≤ d+1 and max-edge-size ≤ k+1

Classification of approximability in terms of λ, d, k ?



Our Results

• uniqueness threshold for (k+1)-uniform (d+1)-regular infinite 
hypertree:

• λ<λc:  FPTAS 

•                                    :   inapproximable unless NP=RP

�c(k, d) =
dd

k(d� 1)d+1

� > 2k+1+(�1)k

k+1 �c ⇡ 2�c

Boolean
variables

deg ≤ d+1 deg ≤ k+1x1

x2

x3

x4

x5

c1

c2

c3

c4

c5

c6

c7
at-most-1

constraints

Z =
X

~x2{0,1}n satisfying
all constraints

�k~xk1

independent sets of hypergraphs
of max-degree ≤ d+1 and max-edge-size ≤ k+1

partition function:
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λ = 1:

easy

hard

matchings of hypergraphs of max-degree (k+1) and max-edge-size (d+1)
independent sets of hypergraphs of max-degree (d+1) and max-edge-size (k+1)

(2,4):   matchings of 3-uniform hypergraphs of max-degree 5,
            exact at the critical threshold:

uniqueness
threshold

dd

k(d� 1)(d+1)
=

22

4 · 15 = 1

[Dudek et al. 2014]

[Liu-Lu 2015]

�c =
dd

k(d� 1)(d+1)

uniqueness threshold:

threshold for hardness:

2k+1+(�1)k

k+1 �c ⇡ 2�c

(4,2):   independent sets of 3-uniform hypergraphs of max-degree 5,
             the only open case for counting Boolean CSP with max-degree 5.



Spatial Mixing (Decay of Correlation)

R

H

v
t
⇤

strong spatial mixing (SSM):
error < exp (-t)

@R

Pr[v is occupied | �@R] ⇡ Pr[v is occupied | ⌧@R]

Pr[v is occupied | �@R,�⇤] ⇡ Pr[v is occupied | ⌧@R,�⇤]

weak spatial mixing (WSM):

Pr[v is occupied | �⇤]

by self-reduction:

FPTAS for partition function Z

is approximable with additive error ε 
in time poly(n, 1/ε)



• algorithm:  Gibbs measure is unique on regular tree    
WSM on regular tree           SSM on trees

• hardness:  a sequence of finite graphs Gn (random regular 
bipartite graph) is locally like the infinite regular tree

• a sequence of labeled Gn  locally converges to the infinite 
regular tree with parity labeling

n
self-avoiding walk (SAW) tree SSM on graphs

FPTAS for graphs

generic

SAW-tree

v
v

regular tree

SSM

arbitrary boundary 
condition

locally
like

random regular
bipartite graph

with parity-preserving symmetry

Hardcore model:

for hypergraph:

Yes.

No.

Similar...
• on infinite regular tree:  Gibbs measure is unique        

semi-translation invariant (invariant under parity-preserving 
automorphisms) Gibbs measure is unique



on infinite uniform regular hypertree
WSM

Theorem:
SSM

�  �c(k, d) =
dd

k(d� 1)d+1
Theorem:

WSM holds for (k+1)-uniform (d+1)-regular hypertree

on infinite (k,d)-hypertree for (≤k, ≤d)-hypergraphs

SSM SSM with the same rate
SSM with exponential rate FPTAS

Theorem:

all statements are for hypergraph independent sets
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Tree Recursion

monomer-dimer model:

hardcore model:

tree recursion:

let

ei

v

vij

independent sets of hypertree T:

fixed by σ

RT =
Pr[v is occupied | �]

Pr[v is unoccupied | �]

RT = �
dY

i=1

1

1 +
Pki

j=1 RTij

RT =
�

1 +
Pk

j=1 RTj

RT = �
dY

i=1

1

1 +RTi



tree recursion: RT = �
dY

i=1

1

1 +
Pki

j=1 RTij

let RT =
Pr[v is occupied | �]

Pr[v is unoccupied | �]

�  �c(k, d) =
dd

k(d� 1)d+1
Theorem:

WSM holds for (k+1)-uniform (d+1)-regular hypertree

root

monotonicity of the recursion

the 2 extremal boundaries at level-l 
are all occupied / all unoccupied

R` = �
dY

i=1

1

1 + kR`�1
the recursion becomes

whose convergence is the same as 
hardcore model: R0

` = �0
dY

i=1

1

1 +R0
`�1

with activity �0 = k�



on infinite uniform regular hypertree
WSM

Theorem:
SSM

�  �c(k, d) =
dd

k(d� 1)d+1
Theorem:

WSM holds for (k+1)-uniform (d+1)-regular hypertree

on infinite (k,d)-hypertree for (≤k, ≤d)-hypergraphs

SSM SSM with the same rate
SSM with exponential rate FPTAS

Theorem:
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for hardcore:

PG[v is occupied | �⇤]

=PT [v is occupied | �⇤]

G=(V,E)
(Weitz 2006)

if cycle closing > cycle starting
if cycle closing < cycle starting
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Hypergraph SAW Tree
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PH[v is occupied | �]
=PT [v is occupied | �]

T = TSAW(H, v)(v0, e1, v1, . . . , e`, v`)self-avoiding walk(SAW):

is a simple path in incidence graph and vi 62
[

j<i

ei

mark any cycle-closing vertex unoccupied if:
cycle-closing edge locally < cycle-starting edge
and occupied if otherwise
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tree recursion:

let

ei

T = TSAW(H, v)v2e1
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RT = �
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Pki

j=1 RTij

RT

RTij

on infinite (k+1,d+1)-hypertree for (≤k+1, ≤d+1)-hypergraphs

SSM SSM with the same rate
SSM with exponential rate FPTAS

Theorem:



on infinite uniform regular hypertree
WSM

Theorem:
SSM

�  �c(k, d) =
dd

k(d� 1)d+1
Theorem:

WSM holds for (k+1)-uniform (d+1)-regular hypertree

on infinite (k+1,d+1)-hypertree for (≤k+1, ≤d+1)-hypergraphs

SSM SSM with the same rate
SSM with exponential rate FPTAS

Theorem:



on infinite uniform regular hypertree
WSM

Theorem:
SSM

R+
` :

R�
` :

T :  the infinite uniform regular hypertree 
the max value of RT conditioning on a boundary at level-l
the min value of RT conditioning on a boundary at level-l

R±
` =

�

(1 + kR⌥
`�1)

d

~� : the vector assigning each vertex a non-uniform activity ≤λ
R+

` (
~�), R�

` (
~�) are similarly defined

proved by induction on l with hypotheses: 
R+

` (
~�)

R�
` (

~�)


R+
`

R�
`

R+
` (

~�)

R�
` (

~�)


R+
`

R�
`

and 1 + kR+
` (

~�)

1 + kR�
` (

~�)


1 + kR+
`

1 + kR�
`

with some extra efforts to deal with hyperedges 
R�

`  R�
`�1  R+

`�1  R+
`sandwiching property:



•   

• λ = λc               SSM with sub-poly rate 

on infinite uniform regular hypertree
WSM

Theorem:
SSM

�  �c(k, d) =
dd

k(d� 1)d+1
Theorem:

WSM holds for (k+1)-uniform (d+1)-regular hypertree

� < �c =
dd

k(d� 1)d+1 FPTAS

on infinite (k+1,d+1)-hypertree for (≤k+1, ≤d+1)-hypergraphs

SSM SSM with the same rate
SSM with exponential rate FPTAS

Theorem:



Inapproximability

no FPRAS unless NP=RP

reduction from hardcore model:

hardcore instance:

�

vertex

edge

k/2 vertices

hyperedge

�0 = 2�
k

[folklore;  Bordewich, Dyer, Karpinski 2008] 

Theorem: �c =
dd

k(d� 1)(d+1)

� > 2k+1+(�1)k

k+1 �c ⇡ 2�c

let

hypergraph instance:
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λ = 1:

easy

hard

matchings of hypergraphs of max-degree (k+1) and max-edge-size (d+1)
independent sets of hypergraphs of max-degree (d+1) and max-edge-size (k+1)

uniqueness
threshold

[Dudek et al. 2014]

[Liu-Lu 2015]

�c =
dd

k(d� 1)(d+1)

uniqueness threshold:

threshold for hardness:

2k+1+(�1)k

k+1 �c ⇡ 2�c



Gibbs Measures
T:  the infinite (k+1)-uniform (d+1)-regular hypertree

μ is a measure over independent sets of T
μ is Gibbs: 

μ is simple: 

conditioning on any unoccupied finite boundary, the distribution 
over the truncated tree is the finite Gibbs distribution
(DLR compatibility conditions)

conditioning on the root being unoccupied, the subtrees 
are independent of each other

v

µ[ v is occupied ]

=
�

1 + �
· µ[ all the neighbors of v are unoccupied ]

(μ is Gibbs)

µ[ all the neighbors of v are unoccupied ]

=µ[ v is occupied ] + µ[ v is unoccupied ]
d+1Y

i=1

0

@1�
kX

j=1

µ[ vij is occupied | v is unoccupied ]

1

A

(μ is Simple)



Gibbs Measures
T:  the infinite (k+1)-uniform (d+1)-regular hypertree
μ is a simple Gibbs measure over independent sets of T

v

µ[ v is occupied ]

=
�

1 + �
· µ[ all the neighbors of v are unoccupied ]

(μ is Gibbs)

µ[ all the neighbors of v are unoccupied ]

=µ[ v is occupied ] + µ[ v is unoccupied ]
d+1Y

i=1

0

@1�
kX

j=1

µ[ vij is occupied | v is unoccupied ]

1

A

(μ is Simple)

pv = �(1� pv)
�d

d+1Y

i=1

0

@1� pv �
kX

j=1

pvij

1

A pv = µ[ v is occupied ]where



Uniqueness
pv = �(1� pv)

�d
d+1Y

i=1

0

@1� pv �
kX

j=1

pvij

1

A

pv = µ[ v is occupied ]

• every blue vertex is incidents to 1 black edge and d white edges;
• every red vertex is incidents to 1 white edge and d black edges;
• every black edge contains k blue vertices and 1 red vertex;
• every white edge contains k red vertices and 1 blue vertex;

where

⇒ has a unique solution (p*, p*) 

⇒ has three solutions (p*, p*), (p+,p-), (p-,p+)  

�  �c(k, d) =
dd

k(d� 1)d+1

non-uniqueness!

assuming a symmetry: 

� > �c(k, d) =
dd

k(d� 1)d+1

(
pb = �(1� pb)�d(1� k pb � pr)(1� pb � k pr)d

pr = �(1� pr)�d(1� k pr � pb)(1� pr � k pb)d
the system becomes:



Symmetry
Gibbs measure μ is invariant under automorphisms from a group G

VS.

action of G classifies vertices and hyperedges into types (orbits)



Symmetry
Gibbs measure μ is invariant under automorphisms from a group G

⌧v :

⌧e :

• each type-i vertex is incident to dij hyperedges of type-j
• each type-j hyperedge contains kji vertices of type-i

# of types(oribits) for vertices
# of types(oribits) for hyperedges

D = (dij)
⌧v⇥⌧e K = (kji)

⌧e⇥⌧v

hypergraph branching matrices:

branching matrices completely characterize orbits of  
hypergraph automorphism groups

action of G classifies vertices and hyperedges into types (orbits)



D =


1 d
d 1

�
K =


k 1
1 k

�

• every blue vertex is incidents to 1 black edge and d white edges;
• every red vertex is incidents to 1 white edge and d black edges;
• every black edge contains k blue vertices and 1 red vertex;
• every white edge contains k red vertices and 1 blue vertex;

• there are k+1 types of vertices;
• there is only 1 type of hyperedges;
• each hyperedge has 1 vertex for each type;

D =

2

64
d+ 1
...

d+ 1

3

75

9
>=

>;
k + 1 K =

⇥
1 · · · 1

⇤
| {z }

k+1



Local Convergence
fix a locally finite infinite hypergraph T and a labeling(orbits) C for vertices and hyperedges:

for any t>0, for random vertex v in       and random vertex-type x in 
if there exists a labeling of vertices and hyperedges of        such thatHn

a sequence of (random) finite hypergraph locally converges to  (T,C )Hn

Hn (T,C )
Nt(v,Hn) Nt(v,T)the t-neighborhoods converges to in distribution.

Definition (Local Convergence)

defined in [Montanari, Mossel, Sly 2012] [Sly, Sun 2012]

locally
like

random regular
bipartite graph

with parity labeling

infinite
regular tree

plays a crucial role in
establishing sharp transition 

of computational complexity:

[Mossel, Weitz, Wormald ’09]
[Sly ’10] [Sly, Sun ’12] 

[Dyer, Frieze, Jerrum ’02]

[Galanis, Štefankovič, Vigoda ’12 ’14]
[Galanis, Ge, Štefankovič, Vigoda, Yang ’11]

... ...



random (k+1)-uniform (d+1)-regular 
(k+1)-partite hypergraph

locally
like

locally
like?



Local Convergence

There exists a sequence of finite hypergraphs      locally convergent to 
(k+1)-uniform (d+1)-regular infinite hypertree with branching matrices D, K

if and only if Markov chain

Hn

Theorem:


0 1

d+1D
1

k+1K 0

�
is time-reversible.

pidij = qjkji

∃ distributions p over vertex orbits and q over hyperedge orbits

satisfying the detailed balanced equation:

p must be a left Perron Eigenvector of DK
q must be a left Perron Eigenvector of KD



Local Convergence

There exists a sequence of finite hypergraphs      locally convergent to 
(k+1)-uniform (d+1)-regular infinite hypertree with branching matrices D, K

if and only if Markov chain

Hn

Theorem:


0 1

d+1D
1

k+1K 0

�
is time-reversible.

D =

2

64
d+ 1
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d+ 1

3

75

9
>=

>;
k + 1 K =

⇥
1 · · · 1

⇤
| {z }

k+1
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1 d+1
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d+1
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d+1
time-reversible



Local Convergence

There exists a sequence of finite hypergraphs      locally convergent to 
(k+1)-uniform (d+1)-regular infinite hypertree with branching matrices D, K

if and only if Markov chain

Hn

Theorem:


0 1

d+1D
1

k+1K 0

�
is time-reversible.

1

k

D =


1 d
d 1

�
K =


k 1
1 k

�

1
k

11

d d
not time-reversible



Summary

• uniqueness threshold for (k+1)-uniform (d+1)-regular infinite 
hypertree:

• SAW-tree holds for the model

• hypertree are the worst-case for SSM

• λ<λc:  FPTAS for the partition function

• λ>2λc: inapproximable (by simulating hardcore)

• local convergence exists if and only if time-reversibility is 
satisfied

• the extremal Gibbs measures achieving the uniqueness 
threshold are not realizable by finite hypergraphs

�c(k, d) =
dd

k(d� 1)d+1

independent sets of hypergraphs of max-degree (d+1) and max-edge-size (k+1)
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λ = 1:

easy

hard

matchings of hypergraphs of max-degree (k+1) and max-edge-size (d+1)
independent sets of hypergraphs of max-degree (d+1) and max-edge-size (k+1)

uniqueness
threshold

[Dudek et al. 2014]

[Liu-Lu 2015]

�c =
dd

k(d� 1)(d+1)

uniqueness threshold:

threshold for hardness:

2k+1+(�1)k

k+1 �c ⇡ 2�c

• algorithmic technique which does not rely on decay of correlation?

• inapproximability which does not need local convergence?

• other extremal Gibbs measures with the same threshold?



Thank you!
Any questions?


