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hardcore model monomer-dimer model

undirected
graph
G=(V,E)

activity A

configurations: independent sets / matchings M
weight: w(l) = A1 w(M) = WM

Partition funCtion: Z — 2I:independent sets in G W(I) Z — 2]\4Imatchings in G W(M)
Gibbs distribution: ulh)y=w() /7 u(M) =w(M) / Z

approximate counting:  FPTAS/FPRAS for Z

sampling: sampling from u within TV-distance ¢
in time poly(n, logl/e)



Decay of Correlation
(Weak Spatial Mixing, VWSM)

Prlv e I | o] L. e

hardcore model:
I ~u = N

boundary condition o : fixing leaves at level [ to be occupied/unoccupied by I

WSM: Pr[v&l | o] does not depednd onh 0 when [—
d
(d — 1)(d+1)
® )\ <Ac © WSM holds on (d+1)-regular tree < Gibbs measure is unique

uniqueness threshold: X. =

® [Weitz ‘06]: L < Ac = FPTAS for graphs with max-degree < d+1
® [Galanis, Stefankovic,Vigoda ‘12; Sly, Sun 12]: A > A = inapproximable unless NP=RP



Decay of Correlation
(Weak Spatial Mixing, VWSM)

monomer-dimer
model:

M ~u

boundary condition ¢ : fixing leaf-edges at level [ to be occupied/unoccupied by M

WSM: Pr[eEM | o] does not depend on 0 when [—x

® VWSM always holds & Gibbs measure is always unique

® [Jerrum, Sinclair '89]: FPRAS for all graphs
® [Bayati, Gamarnik, Katz, Nair, Tetali '08]: FPTAS for graphs with bounded max-degree



CSP (Constraint Satisfaction Problem)

max-degree < d

. matching constraint _
matchmgs: (at-most-1) variables x; € {0,1}



CSP (Constraint Satisfaction Problem)
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> ‘Q degree

degree @'@
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max-degree < d

matching constraint

matchings: (at-most-1) variables i € {0, 1)
: . . matching constraint
independent sets:  variables z; € {0, 1} (at-most-1)
partition function: 7 — Z PR

£e{0,1}" satisfying
all constraints



CSP (Constraint Satisfaction Problem)

deg < k+1

C7
Boolean at-most-1
variables constraints

partition function: 7 = Z PR

xe{0,1}" satisfying
all constraints



Rypergraph matching

hypergraph H = (V, F) vertex set V
hyperedge ec B, eCV

a matching is an subset MCE of disjoint hyperedges

partition
functions: Zx(H) = Z o
M : matching of H
Gibbs ) — AIM
distribution: ** - Zx(H)



matchings in hypergraphs of max-degree < k+1 and max-edge-size < d+1

matching

incidence graph

Oy
U4
(Y
ek

Ug

U7

”6

CSP defined by
matching(packing) constraint

independent sets in hypergraphs of max-degree < d+1 and max-edge-size < k+1

independent sets: a subset of non-adjacent vertices
(to be distinguished with: vertex subsets containing no hyperedge as subset)



Knhown results

deg < k+1

independent sets of hypergraphs
of max-degree < d+1 and max-edge-size < k+1

partition function:

7 _ $ NEE

€7 £e{0,1}" satisfying
Boolean at-most-1 all constraints

variables constraints

Classification of approximability in terms of A, d, k?

® t=1: hardcore mode
® (J=1: monomer-dimer model
® for A=1:
® [Dudek, Karpinski, Rucinski, Szymanska 2014]: FPTAS when d=2, k<2
® [Liu and Lu 2015] FPTAS when d=2, k<3



Our Results

deg <d+1 @  deg =< k+1

independent sets of hypergraphs
of max-degree < d+1 and max-edge-size < k+1

partition function:

7 _ 3 NEE

€7 £e{0,1}" satisfying
Boolean at-most-1 all constraints

variables constraints

® uniqueness threshold for (k+1)-uniform (d+1)-regular infinite
hypertree: g

k(d _ 1)d+1

Ae(k,d) =

® J\<\Ac: FPTAS

® )\> 2’“*};(1_1)5\0 ~ 2)\.: inapproximable unless NP=RP



A = 1: matchings of hypergraphs of max-degree (k+1) and max-edge-size (d+1)

independent sets of hypergraphs of max-degree (d+1) and max-edge-size (k+1)

. uniqueness threshold:

dd
k(d — 1)(d+1)

uniquengs
thresholc

Ae =

threshold for hardness:

2k+1+(—1)"\
P Ae = 2,

(4,2): independent sets of 3-uniform hypergraphs of max-degree 5,
the only open case for counting Boolean CSP with max-degree 5.

matchings of 3-uniform hypergraphs of max- degree 5,

exact at the critical threshold: d° _ 2
E(d— 1)@ — 1.15




Spatial Mixing (Decay of Correlation)

weak spatial mixing (WSM):
Pr[v is occupied | oyr| ~ Pr[v is occupied | 7yRg]
error < exp (-7)
strong spatial mixing (SSM):
Prlv is occupied | oggr, oa] = Prlv is occupied | T9g, o4

by self-reduction:

FY Pr|v is occupied | o4 |
is approximable with additive error €

in time poly(n, 1/¢€)

____________ FPTAS for partition function Z

~
.-.
=~




Hardcore model:

random regular Y

bipartite graph

locally
like

Y
< SAW-tree

arbitrary boundary
condition

regular tree \

w:th barity-preserving symmetry
for hypergraph:
® on infinite regular tree: Gibbs measure is unique <—>

Similar semi-translation invariant (invariant under parity-preserving
automorphisms) Gibbs measure is unique

Yes. ® algorithm: Gibbs measure is unique on regular tree
WSM on regular tree <=—>SSM on trees

selffavoidingiwall(SAV) tm}{ im?”ffﬁag‘fihs

No. ® hardness: a sequence of finite graphs G, (random regular
bipartite graph) is locally like the infinite regular tree

® 3 sequence of labeled G, locally converges to the infinite
regular tree with parity labeling



dd
k(d—1)d+1
I::> WSM holds for (k+1)-uniform (d+1)-regular hypertree

Theorem: )< )\.(kd) =

Theorem: on infinite uniform regular hypertree
WSM = > SSM

Theorem:
on infinite (k,d)-hypertree for (<k, =d)-hypergraphs
SSM — >  SSM with the same rate

SSM with exponential rate ==—>  FPTAS

all statements are for hypergraph independent sets



Tree Recursion

Pr(v is occupied | o] independent sets of hypertree T:

let R+ =
g Pr|v is unoccupied | o] ”
tree recursion.
d \61'
1 .

el Q{{ O
sy el
1=1 1 _I_ ZJ:]_ RT,L-j ‘.K' L]

monomer-dimer model: | e
)\ o . :: ,,,,, .
R =

1+ Ry, ? \
hardcore model:

1 Q O fixed by o

d
RT:AH
i=1 L+ Rr,




Pr|v is occupied | o]

let R =

Prlv is unoccupied | o]

tree recursion: Rz = )\ H

1+Z] 1

dd
k(d _ 1)d—|—1

I:{> WSM holds for (k+1)-uniform (d+1)-regular hypertree

Theorem: )< ).(kd) =

monotonicity of the recursion

I::> the 2 extremal boundaries at level-/
are all occupied / all unoccupled

1

the recursion becomes R, = )\H AT
. 01

whose convergence is the same as
1
. I N\/
hardcore model: r, =) 1:]1 T
with activity )\ = k)




dd
k(d—1)d+1
I::> WSM holds for (k+1)-uniform (d+1)-regular hypertree

Theorem: )< )\.(kd) =

Theorem: on infinite uniform regular hypertree
WSM = > SSM

Theorem:
on infinite (k,d)-hypertree for (<k, =d)-hypergraphs
SSM — >  SSM with the same rate

SSM with exponential rate ==—>  FPTAS



Self-Avoiding Walk Tree

(Weitz 2006)
G=(V,E) © T = Tsaw (G, v)
vV
> o @ @
4, R &
6 ),

&

for hardcore:

Palv is occupied | op

=Pr|v is occupied | oa

' if cycle closing > cycle starting
' if cycle closing < cycle starting



Hypergraph SAVV Tree

self-avoiding walk(SAW): (’an €1,V1,...,€Ey, W) T = TSAW (7‘[ U)
- )
is a simple path in incidence graph and v; ¢ U €i Ui
j<i

Py |v is occupied | o]
. i mark any cycle-closing vertex unoccupied if:
:IP)T [U 1S occupled ‘ 0'] cycle-closing edge locally < cycle-starting edge
and occupied if otherwise



614@? g %T = Tsaw (H, v)
SN
4
W= e(e/Solee

let Ry — —rwisoceupied Jo] ] T e

Prlv is unoccupied |o| -~

<

, arbitrary initial values
tree recur5|on‘

RT—)\H

1+ Zj 1
Theorem:
on infinite (k+1,d+1)-hypertree for (zk+1, <d+1)-hypergraphs
SSM — >  SSM with the same rate

SSM with exponential rate ==—>  FPTAS



dd
k(d—1)d+1
I::> WSM holds for (k+1)-uniform (d+1)-regular hypertree

Theorem: )< )\.(kd) =

Theorem: on infinite uniform regular hypertree
WSM = > SSM

Theorem:
on infinite (k+1,d+1)-hypertree for (zk+1, <d+1)-hypergraphs
SSM — >  SSM with the same rate

SSM with exponential rate =—=—>  FPTAS



Theorem: on infinite uniform regular hypertree
WSM =>> SSM

T : the infinite uniform regular hypertree

RZ . the max value of Rr conditioning on a boundary at level-/

R, : the min value of Ry conditioning on a boundary at level-/
A
Ry =
(1+ERS )4
A : the vector assigning each vertex a non-uniform activity <\

Ry (X), R; () are similarly defined

proved by induction on [ with hypotheses:

_t +(X + +() +
()SRZ Rg_(x)<R_g 2nd 1+kR£(i)<1+kR£
Ry (

) IRy 1+ kR, (\) 1+kR,
sandwiching property: R, < R, , <R,/ , < R/

Ry
Ry

>

with some extra efforts to deal with hyperedges



dd
k(d—1)d+1
I::> WSM holds for (k+1)-uniform (d+1)-regular hypertree

Theorem: )< )\.(kd) =

Theorem: on infinite uniform regular hypertree
WSM = > SSM

Theorem:
on infinite (k+1,d+1)-hypertree for (zk+1, <d+1)-hypergraphs
SSM — >  SSM with the same rate

SSM with exponential rate =—=—>  FPTAS

dd
® N<A= e => FPTAS

® L =X == > SSM with sub-poly rate



Inapproximability

dd
Theorem: let =i

A > BT ~on, I:{> no FPRAS unless NP=RP

reduction from hardcore model:

[folklore; Bordewich, Dyer, Karpinski 2008]

hardcore instance: hypergraph instance:

'l'(;-c.)~‘\ R
OO0
vertex O — > 050 k/2 vertices

----------
- S

‘o O o %
edge O—0O |::> {8%0 8%0'.' hyperedge

~.---------—|-’



A = 1: matchings of hypergraphs of max-degree (k+1) and max-edge-size (d+1)

independent sets of hypergraphs of max-degree (d+1) and max-edge-size (k+1)

k

uniqueness threshold:

dd
k(d — 1)(d+D)

e =

threshold for hardness:

2k+1+(—1)"
) Ae = 2,




Gibbs Measures

T: the infinite (k+1)-uniform (d+1)-regular hypertree

L is @ measure over independent sets of T

W is Gibbs: conditioning on any unoccupied finite boundary, the distribution
over the truncated tree is the finite Gibbs distribution
(DLR compatibility conditions)

W is simple: conditioning on the root being unoccupied, the subtrees
are independent of each other

p[v is occupied | (1 is Gibbs)
A
=T | all the neighbors of v are unoccupied |
[ all the neighbors of v are unoccupied | (M IS S|mP|e)
d+1 k

=p[v is occupied | + p|v is unoccupied | H 1 - Z plvij is occupied | v is unoccupied |
i=1 j=1



Gibbs Measures

T: the infinite (k+1)-uniform (d+1)-regular hypertree

L is a simple Gibbs measure over independent sets of T

p[v is occupied | (u is Gibbs)
A
—=—— - p|all the neighbors of v are unoccupied |
14+ A
p[all the neighbors of v are unoccupied | (“, IS SImPIE)
d+1 k

=p[v is occupied | + p| v is unoccupied | H 1 - Z plvij is occupied | v is unoccupied |
i=1 j=1

d+1 k
Py = A(1 — pv)_d H 1 —p, — vaij where p, = p|v is occupied |
i=1 j=1



Uniqueness

d+1 k

Pu :)\(l_pv)_dH 1_pv _vaij
i=1 j=1

where p, = p[v is occupied |

assuming a symmetry:

* every blue vertex is incidents to | black edge and
e every red vertex is incidents to and d black edges;

* every black edge contains k blue vertices and 1 red vertex;
e every contains k red vertices and 1 blue vertex;

(pb =M1 —pp) 41 —kpp—p)(1 —pp — kp,)?
Pr = )\(1 _pr)_d(l — kpr _pb)(l — Pr — kpb)d

)

the system becomes: <

\

d? .
A > A(k,d) = DT = has three solutions (p*, p*), (p*.,p7), (p-p*)
i non-uniqueness!

A< A(k,d) = - Da = has a unique solution (p*, p*)



Symmetry

Gibbs measure  is invariant under automorphisms from a group G

action of G classifies vertices and hyperedges into types (orbits)




Symmetry

Gibbs measure i is invariant under automorphisms from a group G
action of G classifies vertices and hyperedges into types (orbits)

Ty : # of types(oribits) for vertices

Te ¢ # of types(oribits) for hyperedges

hypergraph branching matrices:
D = (d;;)™"™ K= (kj)™"™

* each type-i vertex is incident to d;; hyperedges of type-j
* each type-j hyperedge contains kj; vertices of type-i

branching matrices completely characterize orbits of
hypergraph automorphism groups



every blue vertex is incidents to 1 black edge and d white edges;
every red vertex is incidents to and d black edges;

every black edge contains k blue vertices and 1 red vertex;
every contains k red vertices and 1 blue vertex;

_. ._
k1
D_l l<;_

O
S, — 1
— QL O

O

* there are k+1 types of vertices;
e there is only 1 type of hyperedges;

* each hyperedge has 1 vertex for each type;

d+1])
D=| : | ‘k+1 K= --- 1]




Local Convergence

fix a locally finite infinite hypergraph 1" and a labeling(orbits) C for vertices and hyperedges:

Definition (Local Convergence)

a sequence of (random) finite hypergraph #H,, locally converges to (T, %)
if there exists a labeling of vertices and hyperedges of H,, such that
for any t>0, for random vertex v in ‘H,and random vertex-type x in (T, %)

the t-neighborhoods N;(v, H,,) converges to N;(v, T) in distribution.

defined in [Montanari, Mossel, Sly 2012] [Sly, Sun 2012]

locally
like

infinite
regular tree

random regular
bipartite graph

with parity labeling

plays a crucial role in
establishing sharp transition

of computational complexity:
Dyer, Frieze, Jerrum ’02]

(Mossel, Weitz, Wormald *09]

[Sly *10] [Sly, Sun *12]

[Galanis, Ge, Stefankovi¢, Vigoda, Yang *11]
[Galanis, Stefankovi¢, Vigoda *12 *14]
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random (k+1)-uniform (d+1)-regular
(k+1)-partite hypergraph

(? locally
like




Local Convergence

' Theorem:

There exists a sequence of finite hypergraphs H,, locally convergent to
(k+1)-uniform (d+1)-regular infinite hypertree with branching matrices D, K

1
0 d+1

D
if and only if Markov chain [ I ] is time-reversible.

k+1

3 distributions p over vertex orbits and g over hyperedge orbits

satisfying the detailed balanced equation:

p must

g must

DE 4

DE 4

pidi; = qjkji

eft Perron Eigenvector of DK

eft Perron Eigenvector of KD



Local Convergence

Theorem:

There exists a sequence of finite hypergraphs H,, locally convergent to
(k+1)-uniform (d+1)-regular infinite hypertree with branching matrices D, K

0 D
if and only if Markov chain [1 I d+(1) ] is time-reversible.

k+1

k+1




Local Convergence

Theorem:

There exists a sequence of finite hypergraphs H,, locally convergent to
(k+1)-uniform (d+1)-regular infinite hypertree with branching matrices D, K

0 2D
if and only if Markov chain [LK d% ] is time-reversible.
k+1
_. ._
mik 1
K_D_l k.

not time-reversible




Summary

independent sets of hypergraphs of max-degree (d+1) and max-edge-size (k+1)

® uniqueness threshold for (k+1)-uniform (d+1)-regular infinite
hypertree: gd

k(d — 1)d+1
® SAW-tree holds for the model

® hypertree are the worst-case for SSM
® )\<\: FPTAS for the partition function

Ae(k,d) =

® )>2)\c inapproximable (by simulating hardcore)

® |ocal convergence exists if and only if time-reversibility is
satisfied

® the extremal Gibbs measures achieving the uniqueness
threshold are not realizable by finite hypergraphs



A = 1: matchings of hypergraphs of max-degree (k+1) and max-edge-size (d+1)

independent sets of hypergraphs of max-degree (d+1) and max-edge-size (k+1)
k 6 1o ‘\]\ .................... .............................. ..............................
| uniqueness threshold:

dd
k(d — 1)(d+1)

uniguen
- thresho

Ae =

threshold for hardness:

2k+1+(—1)"\
P Ae = 2,

® al|gorithmic technique which does not rely on decay of correlation?
® inapproximability which does not need local convergence!

® other extremal Gibbs measures with the same threshold?






