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|Jerrum-Valiant-Vazirani ’86]:

(For self-reducible problems)

approx. counting <:::> (approx., exact) sampling
is tractable is tractable



Computational Phase
Transition

Sampling almost-uniform independent set in
graphs with maximum degree A:

o |[Weitz 2006]: If A<S5, poly-time.

e [Sly 2010]: If A>6, no poly-time algorithm unless
NP=RP.

A phase transition occurs when A: 5—6.

Local Computation?



Local Computation

“What can be computed locally?” [Naor, Stockmeyer *93]

the LOCAL model [Linial *87]: = g

- N
® Communications are =
synchronized. 5/ ”
® |n each round: each node can /

exchange unbounded messages with .g/

all neighbors, perform unbounded
local computation, and read/write
to unbounded local memory.

® Complexity: # of rounds to
terminate in the worst case.

® |n ¢ rounds: each node can collect information up to distance t.

PLOCAL: ¢ = polylog(n)



A Motivation:
Distributed Machine Learning

® Data are stored in a
distributed system.

® Distributed algorithms for:

® sampling from a joint
distribution (specified
by a probabilistic
graphical model);

® inferring according to a
probabilistic graphical
model.




Example: Sample Independent Set

w: uniform distribution of independent sets in G.

Y {0,1}7 indicates an independent set

® Each vEV returnsa Y, {0,1},
such that Y= (Y)her ~ U

® Or: drv(Y, u) < l/poly(n)

network G(V,E)



Inference (Local Counting)

w: uniform distribution of independent sets in G.

uy - marginal distribution at v conditioning on ¢ €{0,1}5.

el 1y py(y) = Pr Yo =y|¥s =0

® Each v € § receives oy as input.

® Each v € V' returns a marginal
distribution fi,, such that:

S

1
7 =n0) =T Prvi,=0|vi<i:v, =0
z " 1;[ Yo : network G(V,E)

/. # of independent sets




Decay of Correlation

uy - marginal distribution at v conditioning on o €{0,1}%.

strong spatial mixing (SSM):

vV boundary condition B&{0,1 }7-sphere(v);
drv (ug, uy?) < poly(n) - exp(—(r))

SSM  (iff A<5 when y is uniform
_~"_ distribution of ind. sets)

N

approx. inference is solvable
in O(log n) rounds

in the LOCAL model




Gibbs Distribution

(with pairwise interactions)

® Fach vertex corresponds to a
variable with finite domain [g]. network G(V,E):

® Each edge e=(u,v)EE has a matrix
(binary constraint):

Ae: [q] x [q] —[0,1]

® Each vertex v&V has a vector
(unary constraint):

by: [q] — [0,1]
e Gibbs distribution u: Vo&[q]V

(o) o H Ae(0u,0v) H by(0v)

GZ(U,U)EE ’UEV




Gibbs Distribution

(with pairwise interactions)

e Gibbs distribution u: Vo€[q]”
,UJ(O') X H Ae(o-uao-v) H bU(O-’U)

e=(u,v)eEFE veV

network G(V,E):

® independent set:

1
A, = 1

-
O_

® coloring:
DR )
a=| U h=: Aot [q] % [q] = [0,1]

) 1 by: [¢] — [0,1]




Gibbs Distribution

e Gibbs distribution u: Vo€[q]”

po)oc [ flos)

network G(V,E):

each (f,5) € F

is a local constraints (factors):
f:a)” = Rxo
S € Vwith diamg(S) = O(1)



Locality of Counting & Sampling

For Gibbs distributions (defined by local factors):

Correlation Inference: . Sampling:
Decay
"""" local approx. ; local approx.
SSM . : .
________ inference . sampling

with additive error < easy

: N
NZ O(log? n) facto>

local approx. > local exact
inference sampling
distributed

with multiplicative error
Las Vegas sampler




Locality of Sampling

Inference:
local approx. local approx.
inference sampling
each v can compute a [l return a random ¥ = (Y¥y)ver
within O(log n)-ball whose distribution [ ~
S.t. dTV (Iuv”uv) < pol}lf(n) dTV (:u :u) — pol317(n)

sequential O(log n)-local procedure:

® scan vertices in V' in an arbitrary order vi, v, ..., vy

. ey el
e fori=1,2,...,n: sample Y, according to [, " -




Network Decomposition

C colors
(C,D) -network-decomposition of G

® classifies vertices into clusters;
® assign each cluster a color in [C];
® cach cluster has diameter <D;
® clusters are properly colored.

(C,Dy-ND: (C,D)-ND of G

Given a (C,D)"- ND:

sequential r-local procedure: = O(log n)

® scan vertices in V' in an arbitrary order vi, vo, ..., vy

- . Yoo Yo,
e fori=1,2,...,n: sample Y, accordingto f," i—1

can be simulated in O(CDr) rounds in LOCAL model




Network Decomposition

O(log n) colors
(C,D) -network-decomposition of G )

® classifies vertices into clusters;
® assign each cluster a color in [C];
® cach cluster has diameter <D;
® clusters are properly colored.

(C,Dy-ND: (C,D)-ND of G

(O(log n), O(log n))"-ND can be
constructed in O(7 log? n) rounds w.h.p.

Limal, Saks, 1993] — [Ghaffari, Kuhn, Maus, 2017]:

r-local SLOCAL algorithm: O(rlog?n)-round LOCAL alg.:
vV ordering 7=(vi, v2, ..., vu), | |INID returns w.h.p. the Y@
returns random vector ¥ for some ordering 7




Locality of Sampling

Inference: Sampling:
O(log n)-rounc O(log3 n)-round
local approx.

inference

with additive error

N

local approx. > local exact
inference sampling

with multiplicative error

distributed
Las Vegas sampler



An LLL-like Framework

independent random variables: Xi, ..., X, with domain €

A : a set of bad events
( variable set vbl(A) C [n]

 function qa : QP — 40,1}
variable-framework Lovasz local lemma

each A € A is associated with <

Rejection sampling: (with conditionally mutually independent filters)
® Xi, ..., Xyare drawn independently;
e ecach A € A occurs independently with prob. 1 — g4 (Xypi(a));

® the sample is accepted if none of A € A occurs.

Target distribution D™ Xi, ..., X, conditioned on accepted

Partial rejection sampling [Guo-Jerrum-Liu’17]: resample not all variables

Resample variables local to the errors? (Moser-Tardos)



Local Rejection Sampling

® draw independent samples of X = (X, ..., X»);
® each A € A occurs (violated) ind. with Pr[4]=1-q4(Xvbi(4));
® while there is a violated bad event A € A: X°Y — current X
® resample all variables in vbl(A4) for violated A4;
e for violated A4: violate 4 with Pr[A4] = 1-g4(Xwbi(1));
® for non-violated A that shares variables with violated event:
violate 4 with Pr[4] =1 — ¢} - ga (Xwbi(a))/qa (X&}f%A))

where g4 is a worst-case lower bound for g( ):
VX ubi(a) : ga (Xubi(a)) > ¢4

soft filters: VA€ A, ¢ >0 ::> X1, ..., Xn) ~D* disg?gif;n)

Only the variables local to the upon termination
violated events are resampled. (work even for dynamic filters)

By a resampling table argument.




Local Ising Sampler

0<p <1
R b G . a8 1] external | [)\]
ferro: A = [ ] anti-ferro: A4 [1 3 fald b |

A >0 51

® cach vertex v € Vind. samples a spin state 6,&{0,1} o« b;
® cach edge e=(u,v) € E fails ind. with prob. 1-4(0u,0v);
® while there is a failed edge: 6°'Y «<— current o

® resample o, for all vertices v involved in failed edges;

® cach failed e=(u,v) is revived ind. with prob. A(cu,0v);

® cach non-failed e=(u,v) that is incident to a failed edge,
fa||S ind. W|th pI‘Ob. 1 'IB'A(O-u,O-v)/A(O-uOId,O-vOId);

Pros: Cons:

® |ocal & parallel ® convergence is hard to

e dynamic graph analyze

® exact sampler ® regime is not tight 5>1-0(3x)
® certifiable termination ® soft constraints



Locality of Sampling

For Gibbs distributions (distributions defined by local factors):

Inference: Sampling:

local approx.
inference

with additive error

N

local approx. > local exact
inference sampling

with multiplicative error

distributed
Las Vegas sampler



Jerrum-Valiant-Vazirani Sampler

[Jerrum-Valiant-Vazirani ’86]

3 an efficient algorithm that samples from [

AN

and evaluates /i(0) given any o € {0,1}"

multiplicative error: Vo € {0, 1} eV < % < el/m
Self-reduction:
1 GO | P
et AZh T (0y) = ZZ;::, ’;j_i)l) ~ oE1/n . 71 az_l(gi)
where ¢—1/27° < ggg < el/2n° by approx. counting




Jerrum-Valiant-Vazirani Sampler

[Jerrum-Valiant-Vazirani ’86]

AN

3 an efficient algorithm that samples from [
and evaluates /i(0) given any o € {0,1}"

—1/n? < fi(o) < ol/n

o , V. .
multiplicative error: Vo € {0,1}" : (o)

Sample a random Y ~ i ;

pick Yo= O ; (v i
accept Y with prob.: ¢ = Y o) eTnr € [e_5/” 1}

fail if otherwise; iY')

Vo € {0,1}"
fu(0)
fi(o)

PrlY = o A accept] = ji(o) -

5 1 o is ind. set
- @ n2 X .
0 otherwise



Boosting Local Inference

additive error:

....... . A 1
' oM | ::> IoFaI approx. drv (83, 147) < Sorm
o, - inference o
multiplicative error:
each v computes a /i, ol no
o P MU Moy (O)’ :uv(l) c [e—l/poly(n)’el/poly(n)}
within r-ball 17 (0) " pg (1)

local self-reduction
SSM > both are achievable with » = O(log n)

boosted sequential r-local sampler: 7= O(log n)

® scan vertices in V' in an arbitrary order vi, vo, ..., v,

- . Yoo Yo,
e fori=1,2,...,n: sample Y, according to f," i—1

. . . _1/n? (o n>2
multiplicative error: Vo € {0,1}" : e < % <el



SLOCAL JVV

Scan vertices in V' in an arbitrary order vi, v2, ..., V:
pass 1: sample Y€&€ {0,1}7 by boosted sequential 7-local sampler ji;

Voelg” @ eV <

A

R VT

pass 1’: construct a sequence of ind. sets D=Y, Y1, ..., ¥, =Y;
s.t. V0O<i<n: e®Yiagrees with Yover vy, ..., v
(' Y; and Y. differ only at v; )

each vi: bad event A, occurs independently with Pr[A,,| =1 — q,,

(Y1) a0 o2
where EM:“( ) e/ JE[G 5/ , 1]

a(Y ;)
A
O(log n)-local
to compute

Y=(Y))\er is accepted if no bad event occurs




Scan vertices in V' in an arbitrary order vi, v2, ..., V:
pass 1: sample Y& {0,1}7 by boosted sequential 7-local sampler ji;

Vo elg” : eV <

A

R T

pass 1’: construct a sequence of ind. sets O=Y, Y1, ..., ¥, =Y;
s.t. V0<i<n: eY agrees with Yover vy, ..., v
* Yiand Y. differ only at v;

each vi: bad event A, occurs independently with Pr[A,,| =1 — q,,

la(Y’I;—l) _3/n2 —5/’)?,2
where ¢, = — . e c [e 1
(Y ;) | |
Vo € {0,1}" :
PrlY = o A accept] = [i(o H H < E 1) . —3/n2)
1=1 i=1 ,u ) Y. —-Y—o
= (o) - /:L(@) e <r1 o 18 ineol. set
fi(o) \ 0 otherwise




C colors

(C,D)" -network-decomposition of G:

® classifies vertices into clusters;

® assign each cluster a color in [C];

® cach cluster has diameter <D in G7;
°

clusters with same color are >r
distance away from each other.

Given a (C,.D)"- ND:
® cach vertex v has an ind. local random source X;;

® cach v assigned with color ¢ in ND can compute in O(7cD) rounds:
O a random indicator Y,&{0,1}

O the local function ¢, to determine bad event 4,

even with access only to the part of ND with colors <c¢

Y conditioned on no 4,’s occurring follows Gibbs distribution wu.



An LLL-like Framework

Each v holds: an ind. random variable X, with domain Q
a bad event A4,

(variable set vbl(v) C |n]
each A, is associated with <

_function ¢, : Q"P'(*) — [0, 1]

Each v maps random sources X,y to final output Y,
by a local function.

Rejection sampling:
® Each v draws an ind. sample of X, and maps Xy to V;
® cach A4, occurs independently with prob. 1- gu(Xvbi));

® the sample Y= (Y,).er is accepted if no A, occurs.

Target distribution ™ ¥ conditioned on accepted




Local Rejection Sampling

® Each v draws ind. sample of X, and computes Y, from Xybi().

® Each v violates A, ind. with Pr[A4,]=1-gv(Xwbi(v)).

® |n each iteration: for each v with A4, violated:
® resample all variables in vbl(v) and update Y,;
® resample 4, with Pr[A4,] = 1-gu(Xwi»));

® for non-violated A4, that shares variables with A4,:
resample A, with Pr[4,] = 1 —¢ "™ - qu (Xubiw)) /¢u (X;’&f%u)).

Given a (C,D)- ND:  r=0(log n) determined by SSM decay rate

® cach iteration costs O(7CD) rounds in LOCAL model;

® terminates in O(1) iterations w.h.p.;

® upon termination: Y ~ u.



(C,D)" -network-decomposition of G:

classifies vertices into clusters;
assign each cluster a color in [C];

each cluster has diameter <D in G7;

clusters with same color are >r
distance away from each other.

[Linial, Saks, 1993]

(C, D)~ ND constructed in O(rCD)
rounds by a Las Vegas process

with fixed D=0(log n) and random C=0(log n) w.h.p.

® cach vertex v has an ind. local random source X;
® each v assigned with color ¢ in ND can compute in O(7cD) rounds:
O a random indicator Y,&{0,1}

O the local function ¢, to determine bad event 4,

even with access only to the part of ND with colors <c¢



Local Rejection Sampling

® Each v violates A, ind. with Pr[A4,]=1-gv(Xwbi(v)).

® |n each iteration: for each v with A4, violated:
® resample all variables in vbl(v) and update Y,;
® resample 4, with Pr[A4,] = 1-gu(Xwi»));

® for non-violated A4, that shares variables with A4,:

® Each v draws ind. sample of X, and computes Y, from Xybi().

resample A, with Pr[4,]= 1 ¢ " (Xobicw)) /4o (X;’&f%u)).

work even for dynamically incoming bad events

(O(log n),0(log n))Odogn- ND is constructed: one color ¢ at a time

® cach iteration costs O(c log? n) rounds in LOCAL moc

® terminates in O(1) iterations w.h.p.; O(log3 n) rounc

® upon termination: Y ~ u.

el;

s w.h.p.



Locality of Sampling

For Gibbs distributions (distributions defined by local factors):

Correlation
Decay:

w EEE N E = =

SSM (o>

---------

Inference:
O(log n)-rounc

local approx.

Sampling:
O(log3 n)-round

inference

exponential  with additive error

decay

with multiplicative error

N

local approx.
inference

> local approx.
sampling

B B BN BN BN BN BN BN BN BN .

Cas

O(log2 n) facto>

> local exact
sampling
distributed

Las Vegas sampler




Algorithmic Implications

(due to the state-of-the-arts of strong spatial mixing)

® O(vAlog®n)-round distributed algorithm for sampling
matchings in graphs with max-degree A;

® O(log® n)-round distributed algorithms for sampling:

® hardcore model (weighted independent set) in the
uniqueness regime;

® antiferromagnetic Ising model in the uniqueness regimes;
® antiferromagnetic 2-spin systems in the uniqueness regimes;
® weighted hypergraph matchings in the uniqueness regimes;

® uniform g-coloring/list-coloring when ¢g>1.763...A in
triangle-free graphs with max-degree A;



Local Exact Sampler

Uniform sampling ind. set in graphs with max-degree A:

When A<5;
® SSM holds;

® 3 O(log3 n)-round distributed Las Vegas sampler.

|[Feng, Sun, Y., PODC’17]:

If A>6, there is an infinite sequence of graphs G with diam(G) = n©(1)
such that even approx. sampling ind. set requires Q(diam) rounds.
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[Jerrum-Valiant-Vazirani ’86]:

(For self-reducible problems)

approx. counting <'1:> (appro
is tractable

x., exact) sampling
is tractable

Computational Phase
Transition

Sampling almost-uniform independent set in
graphs with maximum degree A:

e [Weitz, STOC’06]: If A<5, poly-time.

e [Sly, FOCS’10]: If A>6, no poly-time algorithm
unless NP=RP.

A phase transition occurs when A: 5—6.

Hold for Local Computation!



Message-Passing Algorithms

(LOCAL model with bounded memory/communication)

® Communications are
synchronized.

® Each node v has an independent
random source X,.

® In each round, each node can:
© exchange messages with neighbors
~ perform local computation

© read/write to local memory

® msg/memory size =0(log n)
or even O(1) bits.



Distributed Gibbs Samplers
that may work in practice

® Parallelization of Glauber dynamics:

® “Hogwild!” — biased

® chromatic scheduler —— Q(Alog 1) rounds
O(log n) {' (lazy) Local Metropolis. —— approximate
rounds

® | ocal Rejection Sampling. —— exact, dynamic



Local Rejection Sampling

Ac i lq] x [q] — [8,1] by : q] = Rx>o

® cach vertex v € V' ind. samples a spin state 6,.<[g]| * b,;
® cach edge e=(u,v) € E fails ind. with prob. 1-4.(cu,0v);
® while there is a failed edge: 6°'Y «<— current o
® resample o, for all vertices v involved in failed edges;
® cach failed e=(u,v) is revived ind. with prob. A.(0u,0v);

® cach non-failed e=(u,v) that is incident to a failed edge,
fa||S ind. W|th pI‘Ob. 1 - IB'Ae(O-u,O-v)/Ae(O-uOId,O-VOId);

Pros: Cons:

® |ocal & parallel ® convergence is hard to
® dynamic graph analyze

® exact sampler ® regime is not tight

® certifiable termination ® soft constraints




Local Metropolis

|[Feng, Sun, Y. ’17] [Feng, Y. 18]

Ae: [q] > [q] — [0,1] bv:[q] — [0,1]

proposals: ¢, —> g, <—>0w

current: X, X, Xw

starting from an arbitrary X € [¢]", at each step:

® cach vertex v € V ind. proposes a spin state g,&[g] « by;
® cach edge fails ind. with prob. 1-4¢(X.,0,)A4c(01,X)A(0u,0v);

® cach vertex v € V accepts its proposal and update X, to o
if none of its edge fails.




Thank you!

Feng, Liu, Y. Local rejection sampling with soft filters. arxiv: 1807.06481.

Feng, Hayes, Y. Distributed Symmetry Breaking in Sampling (Optimal
Distributed Randomly Coloring with Fewer Colors). arxiv: 1802.06953.

Feng, Y. On local distributed sampling and counting.
In PODC’18. arxiv: 1802.06686.

Feng, Sun, Y. What can be sampled locally? In PODC’17. arxiv: 1702.00142.



