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Local Computation

the LOCAL model [Linial *87]:

® In 7 rounds: each node can collect information up to distance t.

Locally Checkable Labeling (LCL) problems
[Noar, Stockmeyer "93] :

® (CSPs with local constraints.

® Construct a feasible solution:
vertex/edge coloring, Lovasz local lemma

® Find local optimum: MIS, MM

® Approximate global optimum:

maximum matching, minimum vertex
cover, minimum dominating set network G( V,E)

Q: “What locally definable problems are locally computable?”

by local constraints in O(1) rounds
or in small number of rounds



“What can be sampled locally?”

® CSP with local constraints
onh the network:

® proper g-coloring; é

® independent set;

® Sample a uniform random
feasible solution:

® distributed algorithms
(in the LOCAL model) network G( V,E)

Q: “What locally definable joint distributions
are locally sample-able?”




Markov Random Fields
(MRF)

Each vertex corresponds to a network G(V,E):
variable with finite domain [g].

Each edge e=(u,v)EE imposes a
weighted binary constraint:

Ae : [Q]Q — Rzo

Each vertex v&F imposes a
weighted unary constraint:

bv X [(]] — RZO

Gibbs distribution u: Vo&[q]”
po)ox ] Aclow,00) ] bu(ov)

e=(u,v)eEF veV

X € [q]Y follows u



Markov Random Fields
(MRF)
e Gibbs distribution 1 : vo€[g]”  network G(V,E):
wo)oc ] Aclow o) [ bulow)

e=(u,v)EFE veV
® proper g-coloring:
» _ -
o1
A, = by = |
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® independent set:

el
S0 e X € [q]" follows u
® Jocal conflict colorings : A c {O 1}q><q = {O 1}q

[Fraigniaud, Heinrich, Kosowski’16]

Hammersley—Clifford theorem (Fundamental Thm of random fields):
MRFs are universal for conditional independent positive distributions.




A Motivation:
Distributed Machine Learning

® Data are stored in a
distributed system.

® Sampling from a
probabilistic graphical
model (e.g. the Markov

random field) by
distributed algorithms.




Glauber Dynamics

starting from an arbitrary Xo € [g]” G(V.E):
transition for X; — X41:

pick a uniform random vertex v;

resample X(v) according to the
marginal distribution induced by u at
vertex v conditioning on X{N(v));

marginal distribution:

b0(@) e () A (X ) MRF. Vo elq]",
> yeial 0o W) Tuen o) Aty (Xu )
[q) Y0 \Y (v) “H(us0) Y () o H A (0w, o) H by (04

GZ(U,U)EE ’UEV

Pr(X, =x | XN(U)] =

N———

stationary distribution: u

mixing time:  Tmix = Max min {t | drv (X, p) < QLe}
0



Mixing of Glauber Dynamics

influence matrix {pv,u}v,uEVZ

Pv,u. max discrepancy (in total variation distance) of
marginal distributions at v caused by any pair g,7

of boundary conditions that differ only at u 1

Dobrushin’s condition: contraction of one-step

1pllse = max Z Do <1 —¢ optimal coupling in the worst
oo T v,U . )
v case w.r.t. Hamming distance

. Theorem (Dobrushin °70; Jerrum ’95; Salas, Sokal *97): .
Dobrushin’s |l> Tmix = O (nlogn)

condition for Glauber dynamics

for g-coloring:  Dobrushin’s <}::> q=(2+€)A
condition A = max-degree



Parallelization

Glauber dynamics:

starting from an arbitrary Xo € [g]” G(V.E):
transition for X; — X41:

pick a uniform random vertex v;

resample X(v) according to the
marginal distribution induced by u at
vertex v conditioning on X{N(v));

Parallelization:

® Chromatic scheduler [folklore] [Gonzalez et al., AISTAT 11]:
Vertices in the same color class are updated in parallel.

® “Hogwild!” [Niu, Recht, R¢, Wright, NIPS*11][De Sa, Olukotun, Ré, ICML’16]:
All vertices are updated in parallel, ignoring concurrency issues.



Warm-up: When Luby meets Glauber

starting from an arbitrary Xo € [¢g]”
at each step, for each vertex v&V: G(V,E):

e

independently sample a random
number £,&[0,1];

if py is locally maximum among its
neighborhood N(v):

resample X(v) according to the
marginal distribution induced by u at

vertex v conditioning on X4 N(v));

Luby
step

Glauber
stgp

® | uby step: Independently sample a random independent set.

® Glauber step: For independent set vertices, update correctly
according to the current marginal distributions.

® Stationary distribution: the Gibbs distribution .



Mixing of LubyGlauber

influence matrix {pv,u}v,uEV

Dobrushin’s condition:

[l = max 3 pu <1 ¢
ueV u

’ Theorem (Dobrushin °70; Jerrum °95; Salas, Sokal *97):
Dobrushin’s |l> Tmix = O (nlogn)

condition for Glauber dynamics

Dobrushin’s ::> Tmix = O (A logn)

condition for the LubyGlauber chain

By a similar proof of [Hayes’04] [Dyer-Goldberg-Jerrum’06]



Crossing the Chromatic # Barrier

Glauber LubyGlauber
O(n log n) === O(A log n)

parallel speedup
=0(n /A)

A = max-degree
¥ = chromatic no.

Do not update adjacent vertices simultaneously.

I::> It takes =y steps to update all vertices at least once.

Q: “How to update all variables simultaneously and
still converge to the correct distribution?”




The LocaIMetropoIls Chain

proposals: g, Oy
)

W—0—W

current: X, X, X,

starting from an arbitrary X € [¢g]¥, at each step:

each vertex v&€V independently proposes a random
0vE[q] with probability b,(c,)/ Zié[q] by (2);




Markov Random Fields
(MRF)

Each vertex corresponds to a network G(V,E):
variable with finite domain [g].

Each edge e=(u,v)EE imposes a
weighted binary constraint:

Ae : [Q]Q — Rzo

Each vertex v&F imposes a
weighted unary constraint:

bv X [(]] — RZO

Gibbs distribution u: Vo&[q]”
po)ox ] Aclow,00) ] bu(ov)

e=(u,v)eEF veV

X € [q]Y follows u



The LocalMetropolis Chain

proposals: o¢,<—> ¢, <—>0w

current: X, X, X,

starting from an arbitrary X € [¢g]¥, at each step:

each vertex v&V independently proposes a random
0vE[q] with probability b,(c,)/ Zie[q] by(2); @ Folle.cti.ve
—_ - — & coin flipping
made between
u and v

each edge e=(u,v) passes its check independently
. N PrOb- Ae(X’wJv)Ae(OU7Xv)Ae(Uu70U)/ .max (Ae(zaj))?)’

1,5 €|[q]

each vertex v&V accepts its proposal and update
Xy to oy if all incident edges pass their checks;

® The LocalMetropolis chain is time-reversible and its stationary
distribution is the MRF Gibbs distribution .



LocalMetropolis for g-Coloring

%

O—0—=~0

starting from an arbitrary X € [¢g]”, at each step, each vertex v&V:

proposes a color ,&[g] uniformly and independently at random;

accepts the proposal and update X, to o, if for all v's neighbors u:
Xutov N 0 EXy N 0uF0y ;

1> (2+V2+eA => Tmx=0(log 1)

for LocalMetropolis on g-coloring



A-regular tree each v:

proposes a uniform random color 6,€[q];

update X, to oy if for all v’s neighbors u:
Xutov N 0uEXy N O4F0v;

Xroot = red y Yroot = blue
V non-root v, X, =Y, & {red, blue}

coupling: coupling the proposals (¢%, 6¥) so that (X.,v) ' ")

vertex v proposes consistently: o = o,

"

(X", Y7)

red if ol =Dblue
vertex v proposes bijectively: X = {plue if oY = red

Y

& otherwise

|. the root proposes consistently;
2. each child of the root proposes bijectively;

3. each vertex of depth =2 proposes bijectively if its parent proposed
different colors in the two chains, and proposes consistently if otherwise;



A-regular tree each v:

proposes a uniform random color 6,€[q];

update X, to oy if for all v’s neighbors u:
Xutov N 0uEXy N O4F0v;

Xroot = red y Yroot = blue
V non-root v, X, =Y, & {red, blue}

(X"

coupling: coupling the proposals (6%, ¢7) so that (X,Y)
A 2\~
root: I‘[ root # root] S 1 — (1 — —> (1 — —)

(X", Y7)

q q
1 9 A—1 9 /—1
non-root u at level /:  Pr[X, #Y;] < - (1 — —) <_>
q q q
/ / A 2\ 2 A 2\ 27!
[ root7é root]‘|‘ Z PI‘[XU#YU]Sl—(l—q) (1—q> —|—q_2A (1_q)

non-root w

N 1 1
(assume ¢ > aA) <1—e? (1___ )



A-regular tree each v:

proposes a uniform random color 6,€[q];

update X, to oy if for all v’s neighbors u:
Xutov N 0uEXy N O4F0v;

Xroot = red root = blue
V non-root v, X, =Y, & {red, blue}

for general graph:

|. deal with irregularity by the path coupling metric;
2. deal with cycles by the self-avoiding walks;

3. deal with red/blue non-root vertices by a monotone
argument;



LocalMetropolis for g-Coloring
]

O%C O

starting from an arbitrary X € [¢g]”, at each step, each vertex v&V:

proposes a color ,&[g] uniformly and independently at random;

accepts the proposal and update X, to o, if for all v's neighbors u:
Xutov N 0 EXy N 0uF0y ;

1> (2+V2+eA => Tmx=0(log 1)

for LocalMetropolis on g-coloring

® The mixing time holds even for unbounded A and gq.

® g>(1+¢)A: each vertex is updated at €2(1) rate in LocalMetropolis



[Lower Bounds

Q: “How local can a distributed sampling algorithm be?”

Q: “What cannot be sampled locally?”




The LOCAL Model

the LOCAL model:

® |n f rounds: each node
can collect information
up to distance ¢.

Outputs returned by vertices at distance >2¢
from each other are mutually independent.




Q(log n) Lower Bound for Sampling

For any non-degenerate MREF any distributed algorithm that
samples from its distribution ¢ within bounded total variation
distance requires (2(log n) rounds of communications.

outputs of 7-round algorithm: mutually independent X, ’s

Gibbs distribution u: exponential correlation between X, ’s

ouF T |lpgr — ule |l > exp(—O(t)) > n~ 4

for a t = 0O(log n)

drv (X, /)\(/) > 2% for any product distribution X



Q(log n) Lower Bound for Sampling

For any non-degenerate MREF any distributed algorithm that
samples from its distribution ¢ within bounded total variation
distance requires (2(log n) rounds of communications.

® The (2(log n) lower bound holds for all
MRFs with exponential correlation:

® non-trivial MRFs with constant domain size.

® O(log n) is the new criteria of “being local”
for distributed sampling algorithms.



An Q(diam) Lower Bound

For any A>6, any distributed algorithm that samples uniform
independent set within bounded total variation distance in graphs

with max-degree A requires (diam) rounds of communications.

Sampling almost uniform independent set in graphs with
max-degree A by by poly-time Turing machines:

® [Weitz’06] If A<5, there are poly-time algorithms.

® [Sly’10] If A=6, there is no poly-time algorithm unless
NP=RP.

The Q(diam) lower bound holds for sampling from the

hardcore model with fugacity A > A (A — 1)A-1

A)= (A —2)A




An Q(diam) Lower Bound

For any A>6, any distributed algorithm that samples uniform
independent set within bounded total variation distance in graphs

with max-degree A requires Q(diam) rounds of communications.

G: even cycle

H: random A-regular bipartite gadget of [Sly’10]

if A>6:

sample nearly uniform
independent set in G

N

sample nearly uniform
max-cut in even cycle G

(long-range correlation!)




An Q(diam) Lower Bound

For any A>6, any distributed algorithm that samples uniform
independent set within bounded total variation distance in graphs

with max-degree A requires Q(diam) rounds of communications.

A strong separation of sampling from other
local computation tasks:

® |ndependent set is trivial to construct locally (because
@ is an independent set).

® The Q)(diam) lower bound for sampling holds even
when every vertex knows the entire graph:

® The lower bound holds not because of the locality of input
information, but because of the locality of randomness.



Summary

® Sampling from locally-defined joint distribution via
distributed algorithms:

® [ubyGlauber: O(Alog n) rounds under Dobrushin condition;
® [ocalMetropolis: may achieve O(log n) rounds;

® ()(log n) lower bound for sampling from almost all
nontrivial joint distributions;

® ()(diam) lower bound for sampling from joint distributions
exhibiting (non-uniqueness) phase transition property.

® Open problems:
® better analysis of LocalMetropolis;
® sampling: matchings, ferromagnetic Ising;

® complexity hierarchy for distributed sampling?






