
Rectangle Inequalities for
Data Structure Lower Bounds

Yitong Yin
Nanjing University

Nexus of Information and Computation Theories
Fundamental Inequalities and Lower Bounds Theme

@ Institut Henri Poincaré

Online Note

http://arxiv.org/abs/1602.05391

“Yitong Yin: Simple average-case lower bounds for approximate
near-neighbor from isoperimetric inequalities.”

http://arxiv.org/abs/1602.05391
http://arxiv.org/abs/1602.05391

Nearest Neighbor Search

metric space (X,dist)

(NNS)

Nearest Neighbor Search

metric space (X,dist)

database
y = (y1, y2, . . . , yn) 2 Xn

(NNS)

Nearest Neighbor Search

metric space (X,dist)

database
y = (y1, y2, . . . , yn) 2 Xn

preprocessing

data structure

(NNS)

Nearest Neighbor Search

metric space (X,dist)

database
y = (y1, y2, . . . , yn) 2 Xn

preprocessing

data structure

query x 2 X

(NNS)

x

Nearest Neighbor Search

metric space (X,dist)

database
y = (y1, y2, . . . , yn) 2 Xn

preprocessing

data structure

query x 2 X

output: database point yi closest to the query point x

(NNS)

access

x

Nearest Neighbor Search

metric space (X,dist)

database
y = (y1, y2, . . . , yn) 2 Xn

preprocessing

data structure

query x 2 X

output: database point yi closest to the query point x

(NNS)

access

applications: database, pattern matching, machine learning, ...

x

Near Neighbor Problem

database
y = (y1, y2, . . . , yn) 2 Xn

data structure

query x 2 X

(λ-NN)

access

x

metric space (X,dist)

preprocessing

Near Neighbor Problem

database
y = (y1, y2, . . . , yn) 2 Xn

data structure

query x 2 X

(λ-NN)

access

x

radius λ

�

metric space (X,dist)

preprocessing

Near Neighbor Problem

database
y = (y1, y2, . . . , yn) 2 Xn

data structure

query x 2 X

(λ-NN)

access

x

radius λ

“no” if all yi are λ-faraway from x

�

λ-NN: answer “yes” if ∃yi that is λ-close to x

metric space (X,dist)

preprocessing

Approximate Near Neighbor

database
y = (y1, y2, . . . , yn) 2 Xn

data structure

query x 2 X

(ANN)

access

x

radius λ

�

metric space (X,dist)

preprocessing

Approximate Near Neighbor

database
y = (y1, y2, . . . , yn) 2 Xn

data structure

query x 2 X

(ANN)

access

x

radius λ

“no” if all yi are γλ-faraway from x

approx ratio γ≥1

arbitrary if otherwise

���

(γ, λ)-ANN: answer “yes” if ∃yi that is λ-close to x

metric space (X,dist)

preprocessing

Approximate Near Neighbor

database
y = (y1, y2, . . . , yn) 2 Xn

data structure

query x 2 X

(ANN)

access

x

���

Hamming space X = {0, 1}d

metric space (X,dist)

dist(x, z) = kx� zk1
Hamming distance

preprocessing

radius λ

approx ratio γ≥1

Approximate Near Neighbor

database
y = (y1, y2, . . . , yn) 2 Xn

data structure

query x 2 X

(ANN)

access

x

���

Hamming space X = {0, 1}d

metric space (X,dist)

dist(x, z) = kx� zk1
Hamming distance

Curse of dimensionality!

preprocessing

radius λ

approx ratio γ≥1

Cell-Probe Model

database
y 2 Y

f : X ⇥ Y ! Z

data structure problem:

code T

table

Cell-Probe Model

} w bits(
s cells (words)

⌃ = {0, 1}wwhere

database
y 2 Y

T : Y ! ⌃s

f : X ⇥ Y ! Z

data structure problem:

code T

table

query x 2 X

Cell-Probe Model

} w bits(
s cells (words)

⌃ = {0, 1}wwhere

database
y 2 Y

T : Y ! ⌃s

f : X ⇥ Y ! Z

data structure problem:

code T

table

query x 2 X

t adaptive
cell-probes

Cell-Probe Model

} w bits(
s cells (words)

algorithm A:

⌃ = {0, 1}wwhere

(decision tree)

database
y 2 Y

T : Y ! ⌃s

f : X ⇥ Y ! Z

data structure problem:
f(x, y)

code T

table

query x 2 X

t adaptive
cell-probes

Cell-Probe Model

} w bits(
s cells (words)

algorithm A:

⌃ = {0, 1}wwhere

(decision tree)

protocol: the pair (A, T)

database
y 2 Y

T : Y ! ⌃s

f : X ⇥ Y ! Z

data structure problem:
f(x, y)

code T

table

query x 2 X

t adaptive
cell-probes

Cell-Probe Model

} w bits(
s cells (words)

algorithm A:

⌃ = {0, 1}wwhere

(decision tree)

protocol: the pair (A, T)

database
y 2 Y

T : Y ! ⌃s

f : X ⇥ Y ! Z

data structure problem:

(s, w, t)-cell-probing scheme

f(x, y)

Lower Bounds for Hamming NNS

deterministic randomized

exact

approx.

Hamming space X = {0, 1}d database y 2 Xn

time: t cell-probes; space: s cells, each of w bits

Lower Bounds for Hamming NNS

deterministic randomized

exact

approx.

Hamming space X = {0, 1}d database y 2 Xn

t = ⌦
⇣

d
log s

⌘
[Miltersen et al.1995]

time: t cell-probes; space: s cells, each of w bits

Lower Bounds for Hamming NNS

deterministic randomized

exact

approx.

Hamming space X = {0, 1}d database y 2 Xn

t = ⌦
⇣

d
log s

⌘
t = ⌦

⇣
d

log s

⌘

t = ⌦
⇣

d
log s

⌘

[Miltersen et al.1995] [Barkol Rabani 2000]

[Liu 2004]

time: t cell-probes; space: s cells, each of w bits

Lower Bounds for Hamming NNS

deterministic randomized

exact

approx.

Hamming space X = {0, 1}d database y 2 Xn

t = ⌦
⇣

d
log s

⌘
t = ⌦

⇣
d

log s

⌘

t = ⌦
⇣

d
log s

⌘

[Miltersen et al.1995] [Barkol Rabani 2000]

[Liu 2004]

[Chakrabarti Regev 2004]

for s = poly(n)

time: t cell-probes; space: s cells, each of w bits

t = ⇥
⇣

log log d
log log log d

⌘

Lower Bounds for Hamming NNS

deterministic randomized

exact

approx.

Hamming space X = {0, 1}d database y 2 Xn

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

[Miltersen et al.1995]

[Pătraşcu Thorup 2006]

[Barkol Rabani 2000]

[Pătraşcu Thorup 2006]

[Liu 2004]

[Pătraşcu Thorup 2006]
[Chakrabarti Regev 2004]

for s = poly(n)

time: t cell-probes; space: s cells, each of w bits

t = ⇥
⇣

log log d
log log log d

⌘

Lower Bounds for Hamming NNS

deterministic randomized

exact

approx.

Hamming space X = {0, 1}d database y 2 Xn

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

logn
log

sw
n

⌘

[Miltersen et al.1995]

[Pătraşcu Thorup 2006]

[Barkol Rabani 2000]

[Pătraşcu Thorup 2006]

[Liu 2004]

[Pătraşcu Thorup 2006]

[Panigrahy Talwar Wieder 2008, 2010]

[Chakrabarti Regev 2004]

for s = poly(n)

time: t cell-probes; space: s cells, each of w bits

t = ⇥
⇣

log log d
log log log d

⌘

Lower Bounds for Hamming NNS

deterministic randomized

exact

approx.

Hamming space X = {0, 1}d database y 2 Xn

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

logn
log

sw
n

⌘

[Miltersen et al.1995]

[Pătraşcu Thorup 2006]

[Barkol Rabani 2000]

[Pătraşcu Thorup 2006]

[Liu 2004]

[Pătraşcu Thorup 2006]

[Panigrahy Talwar Wieder 2008, 2010]

[Chakrabarti Regev 2004]

for s = poly(n)

time: t cell-probes; space: s cells, each of w bits

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

t = ⇥
⇣

log log d
log log log d

⌘

Lower Bounds for Hamming NNS

deterministic randomized

exact

approx.

Hamming space X = {0, 1}d database y 2 Xn

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

logn
log

sw
n

⌘

[Miltersen et al.1995]

[Pătraşcu Thorup 2006]

[Barkol Rabani 2000]

[Pătraşcu Thorup 2006]

[Liu 2004]

[Pătraşcu Thorup 2006]

[Panigrahy Talwar Wieder 2008, 2010]

[Chakrabarti Regev 2004]

for s = poly(n)

time: t cell-probes; space: s cells, each of w bits

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

t = ⇥
⇣

log log d
log log log d

⌘

for search problem

Lower Bounds for Hamming NNS

deterministic randomized

exact

approx.

Hamming space X = {0, 1}d database y 2 Xn

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

logn
log

sw
n

⌘

[Miltersen et al.1995]

[Pătraşcu Thorup 2006]

[Barkol Rabani 2000]

[Pătraşcu Thorup 2006]

[Liu 2004]

[Pătraşcu Thorup 2006]

[Panigrahy Talwar Wieder 2008, 2010]

[Chakrabarti Regev 2004]

for s = poly(n)

time: t cell-probes; space: s cells, each of w bits

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

t = ⇥
⇣

log log d
log log log d

⌘

Lower Bounds for Hamming NNS

deterministic randomized

exact

approx.

Hamming space X = {0, 1}d database y 2 Xn

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

logn
log

sw
n

⌘

[Miltersen et al.1995]

[Pătraşcu Thorup 2006]

[Barkol Rabani 2000]

[Pătraşcu Thorup 2006]

[Liu 2004]

[Pătraşcu Thorup 2006]

[Panigrahy Talwar Wieder 2008, 2010]

[Chakrabarti Regev 2004]

for s = poly(n)

time: t cell-probes; space: s cells, each of w bits

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

t = ⇥
⇣

log log d
log log log d

⌘

by round elimination

Average-Case Lower Bounds

(x,y) is sampled from a distribution D over X×Y
f : X ⇥ Y ! Zdata structure problem:

Average-Case Lower Bounds

• deterministic or Les Vegas randomized algorithm:
f(x,y) is returned in t(x,y) cell-probes

• ED[t(x, y)] ≤ t

(x,y) is sampled from a distribution D over X×Y
f : X ⇥ Y ! Zdata structure problem:

Average-Case Lower Bounds

• deterministic or Les Vegas randomized algorithm:
f(x,y) is returned in t(x,y) cell-probes

• ED[t(x, y)] ≤ t

• Monte Carlo randomized algorithm:

• Pr[f(x,y) is correctly returned in t cell-probes] > 2/3

(x,y) is sampled from a distribution D over X×Y
f : X ⇥ Y ! Zdata structure problem:

Average-Case Lower Bounds

• deterministic or Les Vegas randomized algorithm:
f(x,y) is returned in t(x,y) cell-probes

• ED[t(x, y)] ≤ t

• Monte Carlo randomized algorithm:

• Pr[f(x,y) is correctly returned in t cell-probes] > 2/3

• In data-dependent LSH [Andoni Razenshteyn 2015]:
a key step is to solve the problem on random input.

(x,y) is sampled from a distribution D over X×Y
f : X ⇥ Y ! Zdata structure problem:

deterministic randomized

exact

approx.

Lower Bounds for Hamming NNS
Hamming space X = {0, 1}d database y 2 Xn

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

logn
log

sw
n

⌘

[Miltersen et al.1995]

[Pătraşcu Thorup 2006]

[Barkol Rabani 2000]

[Pătraşcu Thorup 2006]

[Liu 2004]

[Pătraşcu Thorup 2006]

[Panigrahy Talwar Wieder 2008, 2010]

[Chakrabarti Regev 2004]

for s = poly(n)

time: t cell-probes; space: s cells, each of w bits

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

t = ⇥
⇣

log log d
log log log d

⌘

deterministic randomized

exact

approx.

Lower Bounds for Hamming NNS
Hamming space X = {0, 1}d database y 2 Xn

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

logn
log

sw
n

⌘

[Miltersen et al.1995]

[Pătraşcu Thorup 2006]

[Barkol Rabani 2000]

[Pătraşcu Thorup 2006]

[Liu 2004]

[Pătraşcu Thorup 2006]

[Panigrahy Talwar Wieder 2008, 2010]

[Chakrabarti Regev 2004]

for s = poly(n)

time: t cell-probes; space: s cells, each of w bits

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

t = ⇥
⇣

log log d
log log log d

⌘

average-case

deterministic randomized

exact

approx.

Lower Bounds for Hamming NNS
Hamming space X = {0, 1}d database y 2 Xn

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

logn
log

sw
n

⌘

[Miltersen et al.1995]

[Pătraşcu Thorup 2006]

[Barkol Rabani 2000]

[Pătraşcu Thorup 2006]

[Liu 2004]

[Pătraşcu Thorup 2006]

[Panigrahy Talwar Wieder 2008, 2010]

[Chakrabarti Regev 2004]

for s = poly(n)

time: t cell-probes; space: s cells, each of w bits

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

t = ⇥
⇣

log log d
log log log d

⌘

average-case

average-case

deterministic randomized

exact

approx.

Lower Bounds for Hamming NNS
Hamming space X = {0, 1}d database y 2 Xn

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

logn
log

sw
n

⌘

[Miltersen et al.1995]

[Pătraşcu Thorup 2006]

[Barkol Rabani 2000]

[Pătraşcu Thorup 2006]

[Liu 2004]

[Pătraşcu Thorup 2006]

[Panigrahy Talwar Wieder 2008, 2010]

[Chakrabarti Regev 2004]

for s = poly(n)

time: t cell-probes; space: s cells, each of w bits

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

t = ⇥
⇣

log log d
log log log d

⌘

average-case

average-case

worst-case

deterministic randomized

exact

approx.

Lower Bounds for Hamming NNS
Hamming space X = {0, 1}d database y 2 Xn

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

logn
log

sw
n

⌘

[Miltersen et al.1995]

[Pătraşcu Thorup 2006]

[Barkol Rabani 2000]

[Pătraşcu Thorup 2006]

[Liu 2004]

[Pătraşcu Thorup 2006]

[Panigrahy Talwar Wieder 2008, 2010]

[Chakrabarti Regev 2004]

for s = poly(n)

time: t cell-probes; space: s cells, each of w bits

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

t = ⇥
⇣

log log d
log log log d

⌘

average-case

average-case

worst-case

worst-case

deterministic randomized

exact

approx.

Lower Bounds for Hamming NNS
Hamming space X = {0, 1}d database y 2 Xn

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

logn
log

sw
n

⌘

[Miltersen et al.1995]

[Pătraşcu Thorup 2006]

[Barkol Rabani 2000]

[Pătraşcu Thorup 2006]

[Liu 2004]

[Pătraşcu Thorup 2006]

[Panigrahy Talwar Wieder 2008, 2010]

[Chakrabarti Regev 2004]

for s = poly(n)

time: t cell-probes; space: s cells, each of w bits

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

[Wang Y. 2014]t = ⌦
⇣

d
log

sw
nd

⌘

t = ⇥
⇣

log log d
log log log d

⌘

average-case

average-case

worst-case

worst-case

worst-case

Approximate Near Neighbor

(γ, λ)-ANN in Hamming space {0,1}d

deterministic or LV randomized algorithm for

Approximate Near Neighbor

(γ, λ)-ANN in Hamming space {0,1}d

deterministic or LV randomized algorithm for

that solves the problem with t cell-probes in expectation
on a table of s<2d cells, each of w<no(1) bits,
under the hard distribution:

Approximate Near Neighbor

(γ, λ)-ANN in Hamming space {0,1}d

deterministic or LV randomized algorithm for

database: y=(y1, y2,...,yn) with yi∈{0,1}d i.i.d. uniform
query: uniform and independent x∈{0,1}d

that solves the problem with t cell-probes in expectation
on a table of s<2d cells, each of w<no(1) bits,
under the hard distribution:

Approximate Near Neighbor

t = ⌦

✓
d

log

sw
nd

◆

(γ, λ)-ANN in Hamming space {0,1}d

deterministic or LV randomized algorithm for

database: y=(y1, y2,...,yn) with yi∈{0,1}d i.i.d. uniform
query: uniform and independent x∈{0,1}d

that solves the problem with t cell-probes in expectation
on a table of s<2d cells, each of w<no(1) bits,
under the hard distribution:

Metric Expansion
metric space (X,dist)

λ-neighborhood: ∀x ∈ X, denote Nλ(x) = {z ∈ X | dist(x,z) ≤ λ}
∀A⊆X, denote Nλ(A) = {z ∈ X | ∃x∈A s.t. dist(x,z) ≤ λ}

Metric Expansion
metric space (X,dist)

λ-neighborhood: ∀x ∈ X, denote Nλ(x) = {z ∈ X | dist(x,z) ≤ λ}
∀A⊆X, denote Nλ(A) = {z ∈ X | ∃x∈A s.t. dist(x,z) ≤ λ}

μ: probability distribution over X

Metric Expansion

• λ-neighborhoods are weakly independent under μ:
∀x ∈ X, μ(Nλ(x)) < 0.99/n

metric space (X,dist)

λ-neighborhood: ∀x ∈ X, denote Nλ(x) = {z ∈ X | dist(x,z) ≤ λ}
∀A⊆X, denote Nλ(A) = {z ∈ X | ∃x∈A s.t. dist(x,z) ≤ λ}

In a metric space (X,dist), we say:

μ: probability distribution over X

Metric Expansion

• λ-neighborhoods are weakly independent under μ:
∀x ∈ X, μ(Nλ(x)) < 0.99/n

metric space (X,dist)

λ-neighborhood: ∀x ∈ X, denote Nλ(x) = {z ∈ X | dist(x,z) ≤ λ}
∀A⊆X, denote Nλ(A) = {z ∈ X | ∃x∈A s.t. dist(x,z) ≤ λ}

• λ-neighborhoods are (Φ,Ψ)-expanding under μ:
∀A⊆X, μ(A) ≥ 1/Φ ⇒ μ(Nλ(A)) ≥ 1-1/Ψ

In a metric space (X,dist), we say:

μ: probability distribution over X

Metric Expansion

• λ-neighborhoods are weakly independent under μ:
∀x ∈ X, μ(Nλ(x)) < 0.99/n

metric space (X,dist)

λ-neighborhood: ∀x ∈ X, denote Nλ(x) = {z ∈ X | dist(x,z) ≤ λ}
∀A⊆X, denote Nλ(A) = {z ∈ X | ∃x∈A s.t. dist(x,z) ≤ λ}

• λ-neighborhoods are (Φ,Ψ)-expanding under μ:
∀A⊆X, μ(A) ≥ 1/Φ ⇒ μ(Nλ(A)) ≥ 1-1/Ψ

In a metric space (X,dist), we say:

μ: probability distribution over X

vertex expansion, “blow-up” effect

(γ, λ)-ANN in metric space (X,dist)

deterministic or LV randomized algorithm for

for metric space (X,dist), distribution μ over X:

(γ, λ)-ANN in metric space (X,dist)

deterministic or LV randomized algorithm for

that solves the problem with t cell-probes in expectation
on a table of size (s, w), under the hard distribution μ×μn:

for metric space (X,dist), distribution μ over X:

query x ∼ μ, database y=(y1, y2,...,yn) ∼ μn

(γ, λ)-ANN in metric space (X,dist)

deterministic or LV randomized algorithm for

that solves the problem with t cell-probes in expectation
on a table of size (s, w), under the hard distribution μ×μn:

for metric space (X,dist), distribution μ over X:

• γλ-neighborhoods are weakly independent under μ:
μ(Nγλ(x)) < 0.99/n for ∀x ∈ X

query x ∼ μ, database y=(y1, y2,...,yn) ∼ μn

(γ, λ)-ANN in metric space (X,dist)

deterministic or LV randomized algorithm for

that solves the problem with t cell-probes in expectation
on a table of size (s, w), under the hard distribution μ×μn:

for metric space (X,dist), distribution μ over X:

• γλ-neighborhoods are weakly independent under μ:
μ(Nγλ(x)) < 0.99/n for ∀x ∈ X

• λ-neighborhoods are (Φ,Ψ)-expanding under μ:
∀A⊆X that μ(A) ≥ 1/Φ ⇒ μ(Nλ(A)) ≥ 1-1/Ψ

query x ∼ μ, database y=(y1, y2,...,yn) ∼ μn

(γ, λ)-ANN in metric space (X,dist)

deterministic or LV randomized algorithm for

that solves the problem with t cell-probes in expectation
on a table of size (s, w), under the hard distribution μ×μn:

for metric space (X,dist), distribution μ over X:

• γλ-neighborhoods are weakly independent under μ:
μ(Nγλ(x)) < 0.99/n for ∀x ∈ X

• λ-neighborhoods are (Φ,Ψ)-expanding under μ:
∀A⊆X that μ(A) ≥ 1/Φ ⇒ μ(Nλ(A)) ≥ 1-1/Ψ

t = ⌦

log�

log

sw
n log

!

t = ⌦

✓
n log

w + log s

◆
or

query x ∼ μ, database y=(y1, y2,...,yn) ∼ μn

Asymmetric Communications

x 2 X

y 2 Y

f : X ⇥ Y ! {0, 1}

Asymmetric Communications

x 2 X

y 2 Y

f : X ⇥ Y ! {0, 1}
f(x, y)

a bits in total

b bits in total

[a,b]-protocol: Alice sends a total of ≤a bits
Bob sends a total of ≤b bits

Asymmetric Communications

x 2 X

y 2 Y

f : X ⇥ Y ! {0, 1}
f(x, y)

a bits in total

b bits in total

[a,b]-protocol: Alice sends a total of ≤a bits
Bob sends a total of ≤b bits

[t log s, tw]-protocol (s,w,t)-cell-probing scheme

The Richness Lemma

[a,b]-protocol: Alice sends a total of ≤a bits
Bob sends a total of ≤b bits

f : X ⇥ Y ! {0, 1}

The Richness Lemma

[a,b]-protocol: Alice sends a total of ≤a bits
Bob sends a total of ≤b bits

distributions μ over X, ν over Yf : X ⇥ Y ! {0, 1}

The Richness Lemma

α-dense: density of 1s ≥ α under μ×ν

[a,b]-protocol: Alice sends a total of ≤a bits
Bob sends a total of ≤b bits

distributions μ over X, ν over Yf : X ⇥ Y ! {0, 1}

The Richness Lemma

α-dense: density of 1s ≥ α under μ×ν

[a,b]-protocol: Alice sends a total of ≤a bits
Bob sends a total of ≤b bits

distributions μ over X, ν over Y

monochromatic 1-rectangle: A×B with A⊆X, B⊆Y
∀(x,y)∈ A×B, f(x,y)=1

f : X ⇥ Y ! {0, 1}

The Richness Lemma

α-dense: density of 1s ≥ α under μ×ν

[a,b]-protocol: Alice sends a total of ≤a bits
Bob sends a total of ≤b bits

distributions μ over X, ν over Y

monochromatic 1-rectangle: A×B with A⊆X, B⊆Y
∀(x,y)∈ A×B, f(x,y)=1

f has 1-rectangle A×B with
μ(A) ≥ 2-O(a)

 ν(B) ≥ 2-O(a+b)

f is 0.01-dense under μ×ν

f has [a,b]-protocol

�
Richness lemma (Miltersen, Nisan, Safra, Wigderson, 1995)

n

f : X ⇥ Y ! {0, 1}

The Richness Lemma

α-dense: density of 1s ≥ α under μ×ν
[a,b]-protocol: Alice sends a total of ≤a bits

Bob sends a total of ≤b bits

distributions μ over X, ν over Yf : X ⇥ Y ! {0, 1}

f has 1-rectangle A×B with
μ(A) ≥ 2-O(a)

 ν(B) ≥ 2-O(a+b)

f is 0.01-dense under μ×ν

f has [a,b]-protocol

�
Richness lemma (Miltersen, Nisan, Safra, Wigderson, 1995)

n

The Richness Lemma

α-dense: density of 1s ≥ α under μ×ν
[a,b]-protocol: Alice sends a total of ≤a bits

Bob sends a total of ≤b bits

distributions μ over X, ν over Y

[t log s, tw]-protocol (s,w,t)-cell-probing scheme

f : X ⇥ Y ! {0, 1}

f has 1-rectangle A×B with
μ(A) ≥ 2-O(a)

 ν(B) ≥ 2-O(a+b)

f is 0.01-dense under μ×ν

f has [a,b]-protocol

�
Richness lemma (Miltersen, Nisan, Safra, Wigderson, 1995)

n

The Richness Lemma

α-dense: density of 1s ≥ α under μ×ν
[a,b]-protocol: Alice sends a total of ≤a bits

Bob sends a total of ≤b bits

distributions μ over X, ν over Y

[t log s, tw]-protocol (s,w,t)-cell-probing scheme

f has 1-rectangle A×B with
μ(A) ≥ 2-O(t log s)

 ν(B) ≥ 2-O(t log s+ tw)

f is 0.01-dense under μ×ν

f has (s,w,t)-cell-probing scheme

�
Richness lemma (Miltersen, Nisan, Safra, Wigderson, 1995)

n

f : X ⇥ Y ! {0, 1}

A New Richness Lemma

f has 1-rectangle A×B with
μ(A) ≥ 2-O(t log s)

 ν(B) ≥ 2-O(t log s+ tw)

f is 0.01-dense under μ×ν

f has (s,w,t)-cell-probing scheme

�
Richness lemma (Miltersen, Nisan, Safra, Wigderson, 1995)

n

distributions μ over X, ν over Yf : X ⇥ Y ! {0, 1}

A New Richness Lemma

∀∆ ∈[320000t, s],
f has 1-rectangle A×B with

μ(A) ≥ 2-O(t log (s/∆))

 ν(B) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×ν

f has average-case
(s,w,t)-cell-probing scheme

under μ×ν

�
New Richness lemma

n

f has 1-rectangle A×B with
μ(A) ≥ 2-O(t log s)

 ν(B) ≥ 2-O(t log s+ tw)

f is 0.01-dense under μ×ν

f has (s,w,t)-cell-probing scheme

�
Richness lemma (Miltersen, Nisan, Safra, Wigderson, 1995)

n

distributions μ over X, ν over Yf : X ⇥ Y ! {0, 1}

A New Richness Lemma

∀∆ ∈[320000t, s],
f has 1-rectangle A×B with

μ(A) ≥ 2-O(t log (s/∆))

 ν(B) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×ν

f has average-case
(s,w,t)-cell-probing scheme

under μ×ν

�
New Richness lemma

n

f has 1-rectangle A×B with
μ(A) ≥ 2-O(t log s)

 ν(B) ≥ 2-O(t log s+ tw)

f is 0.01-dense under μ×ν

f has (s,w,t)-cell-probing scheme

�
Richness lemma (Miltersen, Nisan, Safra, Wigderson, 1995)

n

distributions μ over X, ν over Y

when ∆=O(t), it becomes the richness lemma (with slightly better bounds)

f : X ⇥ Y ! {0, 1}

∀∆ ∈[320000t, s],
f has 1-rectangle A×B with

μ(A) ≥ 2-O(t log (s/∆))

 ν(B) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×ν

f has average-case
(s,w,t)-cell-probing scheme

under μ×ν

�
New Richness lemma

n

∃ constant fraction (under ν) of “good” databases y:

∀∆ ∈[320000t, s],
f has 1-rectangle A×B with

μ(A) ≥ 2-O(t log (s/∆))

 ν(B) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×ν

f has average-case
(s,w,t)-cell-probing scheme

under μ×ν

�
New Richness lemma

n

∃ constant fraction (under ν) of “good” databases y:

Ty
s1

}w bits

∀good y,

∀∆ ∈[320000t, s],
f has 1-rectangle A×B with

μ(A) ≥ 2-O(t log (s/∆))

 ν(B) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×ν

f has average-case
(s,w,t)-cell-probing scheme

under μ×ν

�
New Richness lemma

n

∃ constant fraction (under ν) of “good” databases y:

Ty

∃ ∆ cells resolving 2-O(t log (s/∆)) fraction (under μ) positive queries

s1
}w bits

∀good y,

∀∆ ∈[320000t, s],
f has 1-rectangle A×B with

μ(A) ≥ 2-O(t log (s/∆))

 ν(B) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×ν

f has average-case
(s,w,t)-cell-probing scheme

under μ×ν

�
New Richness lemma

n

∃ constant fraction (under ν) of “good” databases y:

Ty

∃ ∆ cells resolving 2-O(t log (s/∆)) fraction (under μ) positive queries

ω: positions & contents
of these ∆ cellss1

}w bits

∀good y,

∀∆ ∈[320000t, s],
f has 1-rectangle A×B with

μ(A) ≥ 2-O(t log (s/∆))

 ν(B) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×ν

f has average-case
(s,w,t)-cell-probing scheme

under μ×ν

�
New Richness lemma

n

∃ constant fraction (under ν) of “good” databases y:

Ty

∃ ∆ cells resolving 2-O(t log (s/∆)) fraction (under μ) positive queries

ω: positions & contents
of these ∆ cellss1

}w bits

∀good y,

good y ⟼ ω

∀∆ ∈[320000t, s],
f has 1-rectangle A×B with

μ(A) ≥ 2-O(t log (s/∆))

 ν(B) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×ν

f has average-case
(s,w,t)-cell-probing scheme

under μ×ν

�
New Richness lemma

n

∃ constant fraction (under ν) of “good” databases y:

Ty

∃ ∆ cells resolving 2-O(t log (s/∆)) fraction (under μ) positive queries

ω: positions & contents
of these ∆ cellss1

}w bits

∀good y,

good y ⟼ ω possibilities
�
s
�

�
2�w = 2O(� log

s
�+�w)

∀∆ ∈[320000t, s],
f has 1-rectangle A×B with

μ(A) ≥ 2-O(t log (s/∆))

 ν(B) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×ν

f has average-case
(s,w,t)-cell-probing scheme

under μ×ν

�
New Richness lemma

n

∃ constant fraction (under ν) of “good” databases y:

Ty

∃ ∆ cells resolving 2-O(t log (s/∆)) fraction (under μ) positive queries

ω: positions & contents
of these ∆ cellss1

}w bits

∀good y,

≥ 2-O(∆ log (s/∆) + ∆ w) fraction (under ν) good y ⟼	the	same ω

good y ⟼ ω possibilities
�
s
�

�
2�w = 2O(� log

s
�+�w)

∀∆ ∈[320000t, s],
f has 1-rectangle A×B with

μ(A) ≥ 2-O(t log (s/∆))

 ν(B) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×ν

f has average-case
(s,w,t)-cell-probing scheme

under μ×ν

�
New Richness lemma

n

cell-probe model: once ω is fixed,
the set of positive queries resolved by ω is fixed

∃ constant fraction (under ν) of “good” databases y:

Ty

∃ ∆ cells resolving 2-O(t log (s/∆)) fraction (under μ) positive queries

ω: positions & contents
of these ∆ cellss1

}w bits

∀good y,

≥ 2-O(∆ log (s/∆) + ∆ w) fraction (under ν) good y ⟼	the	same ω

good y ⟼ ω possibilities
�
s
�

�
2�w = 2O(� log

s
�+�w)

∀∆ ∈[320000t, s],
f has 1-rectangle A×B with

μ(A) ≥ 2-O(t log (s/∆))

 ν(B) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×ν

f has average-case
(s,w,t)-cell-probing scheme

under μ×ν

�
New Richness lemma

n

cell-probe model: once ω is fixed,
the set of positive queries resolved by ω is fixed

∃ constant fraction (under ν) of “good” databases y:

Ty

∃ ∆ cells resolving 2-O(t log (s/∆)) fraction (under μ) positive queries

ω: positions & contents
of these ∆ cellss1

}w bits

∀good y,

≥ 2-O(∆ log (s/∆) + ∆ w) fraction (under ν) good y ⟼	the	same ω

good y ⟼ ω possibilities
�
s
�

�
2�w = 2O(� log

s
�+�w)

B :

∀∆ ∈[320000t, s],
f has 1-rectangle A×B with

μ(A) ≥ 2-O(t log (s/∆))

 ν(B) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×ν

f has average-case
(s,w,t)-cell-probing scheme

under μ×ν

�
New Richness lemma

n

cell-probe model: once ω is fixed,
the set of positive queries resolved by ω is fixed

∃ constant fraction (under ν) of “good” databases y:

Ty

∃ ∆ cells resolving 2-O(t log (s/∆)) fraction (under μ) positive queries

ω: positions & contents
of these ∆ cellss1

}w bits

∀good y,

≥ 2-O(∆ log (s/∆) + ∆ w) fraction (under ν) good y ⟼	the	same ω

good y ⟼ ω possibilities
�
s
�

�
2�w = 2O(� log

s
�+�w)

B :

A :

∀∆ ∈[320000t, s],
f has 1-rectangle A×B with

μ(A) ≥ 2-O(t log (s/∆))

 ν(B) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×ν

f has average-case
(s,w,t)-cell-probing scheme

under μ×ν

�
New Richness lemma

n

f is 0.01-dense under μ×ν

f : X ⇥ Y ! {0, 1} distributions μ over X, ν over Y

f(x,y) is answered with t(x,y) cell-probes: Eμ×ν[t(x,y)] ≤ t

f is 0.01-dense under μ×ν

f : X ⇥ Y ! {0, 1} distributions μ over X, ν over Y

f(x,y) is answered with t(x,y) cell-probes: Eμ×ν[t(x,y)] ≤ t

fix database (column) y∈Y

f is 0.01-dense under μ×ν

f : X ⇥ Y ! {0, 1} distributions μ over X, ν over Y

f(x,y) is answered with t(x,y) cell-probes: Eμ×ν[t(x,y)] ≤ t

X

+
y = {x 2 X | f(x, y) = 1}

fix database (column) y∈Y

set of positive queries:

f is 0.01-dense under μ×ν

f : X ⇥ Y ! {0, 1} distributions μ over X, ν over Y

f(x,y) is answered with t(x,y) cell-probes: Eμ×ν[t(x,y)] ≤ t

X

+
y = {x 2 X | f(x, y) = 1}

fix database (column) y∈Y

set of positive queries:

µ

+
y (x) = µ(x | X+

y) = Pr
x⇠µ

[x = x | f(x, y) = 1]

distribution over positive queries induced by μ:

f is 0.01-dense under μ×ν

f : X ⇥ Y ! {0, 1} distributions μ over X, ν over Y

f(x,y) is answered with t(x,y) cell-probes: Eμ×ν[t(x,y)] ≤ t

X

+
y = {x 2 X | f(x, y) = 1}

fix database (column) y∈Y

set of positive queries:

µ

+
y (x) = µ(x | X+

y) = Pr
x⇠µ

[x = x | f(x, y) = 1]

distribution over positive queries induced by μ:

9Y
good

✓ Y s.t. ⌫(Y
good

) � 0.0025 and 8y 2 Y
good

:

• µ(X+
y) � 0.005;

• E
x⇠µ+

y
[t(x, y)]  80000t.

f is 0.01-dense under μ×ν

f : X ⇥ Y ! {0, 1} distributions μ over X, ν over Y

f(x,y) is answered with t(x,y) cell-probes: Eμ×ν[t(x,y)] ≤ t

X

+
y = {x 2 X | f(x, y) = 1}

fix database (column) y∈Y

set of positive queries:

µ

+
y (x) = µ(x | X+

y) = Pr
x⇠µ

[x = x | f(x, y) = 1]

distribution over positive queries induced by μ:

9Y
good

✓ Y s.t. ⌫(Y
good

) � 0.0025 and 8y 2 Y
good

:

• µ(X+
y) � 0.005;

• E
x⇠µ+

y
[t(x, y)]  80000t.

(large amount of positive queries)

f is 0.01-dense under μ×ν

f : X ⇥ Y ! {0, 1} distributions μ over X, ν over Y

f(x,y) is answered with t(x,y) cell-probes: Eμ×ν[t(x,y)] ≤ t

X

+
y = {x 2 X | f(x, y) = 1}

fix database (column) y∈Y

set of positive queries:

µ

+
y (x) = µ(x | X+

y) = Pr
x⇠µ

[x = x | f(x, y) = 1]

distribution over positive queries induced by μ:

9Y
good

✓ Y s.t. ⌫(Y
good

) � 0.0025 and 8y 2 Y
good

:

• µ(X+
y) � 0.005;

• E
x⇠µ+

y
[t(x, y)]  80000t.

(large amount of positive queries)

(bounded average cost
over positive queries)

9Y
good

✓ Y s.t. ⌫(Y
good

) � 0.0025 and 8y 2 Y
good

:

• µ(X+
y) � 0.005;

• E
x⇠µ+

y
[t(x, y)]  80000t.

(large amount of positive queries)

(bounded average cost
over positive queries)

9Y
good

✓ Y s.t. ⌫(Y
good

) � 0.0025 and 8y 2 Y
good

:

• µ(X+
y) � 0.005;

• E
x⇠µ+

y
[t(x, y)]  80000t.

(large amount of positive queries)

(bounded average cost
over positive queries)

fix ∀y ∈ Ygood :

Ty :
s1

9Y
good

✓ Y s.t. ⌫(Y
good

) � 0.0025 and 8y 2 Y
good

:

• µ(X+
y) � 0.005;

• E
x⇠µ+

y
[t(x, y)]  80000t.

(large amount of positive queries)

(bounded average cost
over positive queries)

fix ∀y ∈ Ygood :

Ty :
s1

X+
y :

9Y
good

✓ Y s.t. ⌫(Y
good

) � 0.0025 and 8y 2 Y
good

:

• µ(X+
y) � 0.005;

• E
x⇠µ+

y
[t(x, y)]  80000t.

(large amount of positive queries)

(bounded average cost
over positive queries)

fix ∀y ∈ Ygood :

Ty :
s1

X+
y :

hypergraph with vertices [s] and hyperedges X+
y

9Y
good

✓ Y s.t. ⌫(Y
good

) � 0.0025 and 8y 2 Y
good

:

• µ(X+
y) � 0.005;

• E
x⇠µ+

y
[t(x, y)]  80000t.

(large amount of positive queries)

(bounded average cost
over positive queries)

fix ∀y ∈ Ygood :

Ty :
s1

X+
y :

hypergraph with vertices [s] and hyperedges X+
y

average size of hyperedges ≤80000t (under)µ+
y

9Y
good

✓ Y s.t. ⌫(Y
good

) � 0.0025 and 8y 2 Y
good

:

• µ(X+
y) � 0.005;

• E
x⇠µ+

y
[t(x, y)]  80000t.

(large amount of positive queries)

(bounded average cost
over positive queries)

fix ∀y ∈ Ygood :

Ty :
s1

X+
y :

hypergraph with vertices [s] and hyperedges X+
y

average size of hyperedges ≤80000t (under)µ+
y

9Y
good

✓ Y s.t. ⌫(Y
good

) � 0.0025 and 8y 2 Y
good

:

• µ(X+
y) � 0.005;

• E
x⇠µ+

y
[t(x, y)]  80000t.

(large amount of positive queries)

(bounded average cost
over positive queries)

fix ∀y ∈ Ygood :

Ty :
s1

X+
y :

hypergraph with vertices [s] and hyperedges X+
y

average size of hyperedges ≤80000t (under)µ+
y

probabilistic
method

∀ ∆ ≥320000t, ∃ sub-hypergraph induced by ∆ vertices
of measure (under)µ+

y
1

2

�
�

2s

�
80000t � 2�O(t log s

�)

9Y
good

✓ Y s.t. ⌫(Y
good

) � 0.0025 and 8y 2 Y
good

:

• µ(X+
y) � 0.005;

• E
x⇠µ+

y
[t(x, y)]  80000t.

(large amount of positive queries)

(bounded average cost
over positive queries)

fix ∀y ∈ Ygood :

Ty :
s1

X+
y :

9Y
good

✓ Y s.t. ⌫(Y
good

) � 0.0025 and 8y 2 Y
good

:

• µ(X+
y) � 0.005;

• E
x⇠µ+

y
[t(x, y)]  80000t.

(large amount of positive queries)

(bounded average cost
over positive queries)

fix ∀y ∈ Ygood :

Ty :
s1

X+
y :

∀ ∆ ≥320000t :
∃ ∆ cells resolving 0.0025(∆/2s)80000t=2-O(t log (s/∆))

fraction of positive queries (under μ)

9Y
good

✓ Y s.t. ⌫(Y
good

) � 0.0025 and 8y 2 Y
good

:

• µ(X+
y) � 0.005;

• E
x⇠µ+

y
[t(x, y)]  80000t.

(large amount of positive queries)

(bounded average cost
over positive queries)

fix ∀y ∈ Ygood :

Ty :
s1

X+
y :

∀ ∆ ≥320000t :
∃ ∆ cells resolving 0.0025(∆/2s)80000t=2-O(t log (s/∆))

fraction of positive queries (under μ)

good y ⟼ ω resolving 2-O(t log (s/∆)) positive queries

A New Richness Lemma

∀∆ ∈[320000t,s],
f has 1-rectangle A×B with

μ(A) ≥ 2-O(t log (s/∆))

 ν(B) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×ν

f has average-case
(s,w,t)-cell-probing scheme

under μ×ν

�
New Richness lemma

n

f : X ⇥ Y ! {0, 1} distributions μ over X, ν over Y

Conjunction Problem
f : X ⇥ Y ! {0, 1}data structure problem

Conjunction Problem
f : X ⇥ Y ! {0, 1}data structure problem

Y = Zn : database y=(y1,...,yn) where yi ∈ Z

Conjunction Problem
f : X ⇥ Y ! {0, 1}data structure problem

Y = Zn

point-wise function:

: database y=(y1,...,yn) where yi ∈ Z

g : X ⇥ Z ! {0, 1}

f(x, y) =
n̂

i=1

g(x, yi)

Conjunction Problem
f : X ⇥ Y ! {0, 1}data structure problem

Y = Zn

point-wise function:

: database y=(y1,...,yn) where yi ∈ Z

g : X ⇥ Z ! {0, 1}

f(x, y) =
n̂

i=1

g(x, yi)

(γ, λ)-ANN: X = Z is the metric space

g(x, yi) =

8
><

>:

1 dist(x, yi) > ��

0 dist(x, yi)  �

⇤ otherwise

Conjunction Problem
f : X ⇥ Y ! {0, 1}data structure problem

Y = Zn

point-wise function:

: database y=(y1,...,yn) where yi ∈ Z

g : X ⇥ Z ! {0, 1}

f(x, y) =
n̂

i=1

g(x, yi)

(γ, λ)-ANN: X = Z is the metric space

g(x, yi) =

8
><

>:

1 dist(x, yi) > ��

0 dist(x, yi)  �

⇤ otherwise

Examples: partial match, membership, range query, ...

f(x, y) =
n̂

i=1

g(x, yi)

data structure problem

g : X ⇥ Z ! {0, 1}

f : X ⇥ Zn ! {0, 1}

with point-wise function

f(x, y) =
n̂

i=1

g(x, yi)

data structure problem

g : X ⇥ Z ! {0, 1}

f : X ⇥ Zn ! {0, 1}

with point-wise function

distributions μ over X, ν over Z, νn over Y = Zn

f(x, y) =
n̂

i=1

g(x, yi)

data structure problem

g : X ⇥ Z ! {0, 1}

f : X ⇥ Zn ! {0, 1}

with point-wise function

distributions μ over X, ν over Z, νn over Y = Zn

Assume:
• density of 0s in g is ≤0.99/n under μ×ν;
• g has no 1-rectangle A×B with μ(A)≥1/Φ and ν(B)≥1/Ψ.

t = ⌦

log�

log

sw
n log

!

t = ⌦

✓
n log

w + log s

◆
or

Theorem

If f has an average-case (s,w,t)-cell-probing scheme under μ×νn

Assume:
• density of 0s in g is ≤0.99/n under μ×ν;
• g has no 1-rectangle A×B with μ(A)≥1/Φ and ν(B)≥1/Ψ.

f(x, y) =
n̂

i=1

g(x, yi)

Assume:
• density of 0s in g is ≤0.99/n under μ×ν;
• g has no 1-rectangle A×B with μ(A)≥1/Φ and ν(B)≥1/Ψ.

f(x, y) =
n̂

i=1

g(x, yi)

f is 0.01-dense
under μ×νn

union
bound

∀∆ ∈[320000t,s],
f has 1-rectangle A×B’ with

μ(A) ≥ 2-O(t log (s/∆))

 νn(B’) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×νn

f has average-case (s,w,t)-
cell-probing scheme under μ×νn

�
New Richness lemma

n

Assume:
• density of 0s in g is ≤0.99/n under μ×ν;
• g has no 1-rectangle A×B with μ(A)≥1/Φ and ν(B)≥1/Ψ.

f(x, y) =
n̂

i=1

g(x, yi)

f is 0.01-dense
under μ×νn

union
bound

∀∆ ∈[320000t,s],
f has 1-rectangle A×B’ with

μ(A) ≥ 2-O(t log (s/∆))

 νn(B’) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×νn

f has average-case (s,w,t)-
cell-probing scheme under μ×νn

�
New Richness lemma

n

Assume:
• density of 0s in g is ≤0.99/n under μ×ν;
• g has no 1-rectangle A×B with μ(A)≥1/Φ and ν(B)≥1/Ψ.

f(x, y) =
n̂

i=1

g(x, yi)

f is 0.01-dense
under μ×νn

union
bound

νn(B’) ≥ 2-O(∆ log (s/∆) + ∆ w) > 1/Ψn

� = O
⇣

n log

w

⌘
\ ⌦

⇣
n log

w+log s

⌘
choose to satisfy

∀∆ ∈[320000t,s],
f has 1-rectangle A×B’ with

μ(A) ≥ 2-O(t log (s/∆))

 νn(B’) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×νn

f has average-case (s,w,t)-
cell-probing scheme under μ×νn

�
New Richness lemma

n

Assume:
• density of 0s in g is ≤0.99/n under μ×ν;
• g has no 1-rectangle A×B with μ(A)≥1/Φ and ν(B)≥1/Ψ.

f(x, y) =
n̂

i=1

g(x, yi)

f is 0.01-dense
under μ×νn

union
bound

νn(B’) ≥ 2-O(∆ log (s/∆) + ∆ w) > 1/Ψn

� = O
⇣

n log

w

⌘
\ ⌦

⇣
n log

w+log s

⌘
choose to satisfy

case 1: ∆ < 320000t

∀∆ ∈[320000t,s],
f has 1-rectangle A×B’ with

μ(A) ≥ 2-O(t log (s/∆))

 νn(B’) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×νn

f has average-case (s,w,t)-
cell-probing scheme under μ×νn

�
New Richness lemma

n

Assume:
• density of 0s in g is ≤0.99/n under μ×ν;
• g has no 1-rectangle A×B with μ(A)≥1/Φ and ν(B)≥1/Ψ.

f(x, y) =
n̂

i=1

g(x, yi)

f is 0.01-dense
under μ×νn

union
bound

νn(B’) ≥ 2-O(∆ log (s/∆) + ∆ w) > 1/Ψn

� = O
⇣

n log

w

⌘
\ ⌦

⇣
n log

w+log s

⌘
choose to satisfy

case 1: ∆ < 320000t t = ⌦

✓
n log

w + log s

◆

∀∆ ∈[320000t,s],
f has 1-rectangle A×B’ with

μ(A) ≥ 2-O(t log (s/∆))

 νn(B’) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×νn

f has average-case (s,w,t)-
cell-probing scheme under μ×νn

�
New Richness lemma

n

Assume:
• density of 0s in g is ≤0.99/n under μ×ν;
• g has no 1-rectangle A×B with μ(A)≥1/Φ and ν(B)≥1/Ψ.

f(x, y) =
n̂

i=1

g(x, yi)

f is 0.01-dense
under μ×νn

union
bound

νn(B’) ≥ 2-O(∆ log (s/∆) + ∆ w) > 1/Ψn

� = O
⇣

n log

w

⌘
\ ⌦

⇣
n log

w+log s

⌘
choose to satisfy

case 1: ∆ < 320000t
case 2: otherwise

t = ⌦

✓
n log

w + log s

◆

∀∆ ∈[320000t,s],
f has 1-rectangle A×B’ with

μ(A) ≥ 2-O(t log (s/∆))

 νn(B’) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×νn

f has average-case (s,w,t)-
cell-probing scheme under μ×νn

�
New Richness lemma

n

Assume:
• density of 0s in g is ≤0.99/n under μ×ν;
• g has no 1-rectangle A×B with μ(A)≥1/Φ and ν(B)≥1/Ψ.

f(x, y) =
n̂

i=1

g(x, yi)

f is 0.01-dense
under μ×νn

union
bound

νn(B’) ≥ 2-O(∆ log (s/∆) + ∆ w) > 1/Ψn

� = O
⇣

n log

w

⌘
\ ⌦

⇣
n log

w+log s

⌘
choose to satisfy

case 1: ∆ < 320000t
case 2: otherwise 1/Φ > μ(A) ≥ 2-O(t log (s/∆))

t = ⌦

✓
n log

w + log s

◆

∀∆ ∈[320000t,s],
f has 1-rectangle A×B’ with

μ(A) ≥ 2-O(t log (s/∆))

 νn(B’) ≥ 2-O(∆ log (s/∆) + ∆ w)

f is 0.01-dense under μ×νn

f has average-case (s,w,t)-
cell-probing scheme under μ×νn

�
New Richness lemma

n

Assume:
• density of 0s in g is ≤0.99/n under μ×ν;
• g has no 1-rectangle A×B with μ(A)≥1/Φ and ν(B)≥1/Ψ.

f(x, y) =
n̂

i=1

g(x, yi)

f is 0.01-dense
under μ×νn

union
bound

νn(B’) ≥ 2-O(∆ log (s/∆) + ∆ w) > 1/Ψn

� = O
⇣

n log

w

⌘
\ ⌦

⇣
n log

w+log s

⌘
choose to satisfy

case 1: ∆ < 320000t
case 2: otherwise 1/Φ > μ(A) ≥ 2-O(t log (s/∆)) t = ⌦

log�

log

sw
n log

!t = ⌦

✓
n log

w + log s

◆

f(x, y) =
n̂

i=1

g(x, yi)

data structure problem

g : X ⇥ Z ! {0, 1}

f : X ⇥ Zn ! {0, 1}

with point-wise function

distributions μ over X, ν over Z, νn over Y = Zn

Assume:
• density of 0s in g is ≤0.99/n under μ×ν;
• g has no 1-rectangle A×B with μ(A)≥1/Φ and ν(B)≥1/Ψ.

t = ⌦

log�

log

sw
n log

!

t = ⌦

✓
n log

w + log s

◆
or

Theorem

If f has an average-case (s,w,t)-cell-probing scheme under μ×νn

Assume:
• density of 0s in g is ≤0.99/n under μ×μ;
• g has no 1-rectangle A×B with μ(A)≥1/Φ and μ(B)≥1/Ψ.

f(x, y) =
n̂

i=1

g(x, yi)

distributions μ over X, μ over X, μn over Y = Xn

(γ, λ)-ANN:

g(x, yi) =

8
><

>:

1 dist(x, yi) > ��

0 dist(x, yi)  �

⇤ otherwise

t = ⌦

log�

log

sw
n log

!

t = ⌦

✓
n log

w + log s

◆
or

Theorem

If f has an average-case (s,w,t)-cell-probing scheme under μ×μn

Assume:
• density of 0s in g is ≤0.99/n under μ×μ;
• g has no 1-rectangle A×B with μ(A)≥1/Φ and μ(B)≥1/Ψ.

f(x, y) =
n̂

i=1

g(x, yi)

distributions μ over X, μ over X, μn over Y = Xn

(γ, λ)-ANN:

g(x, yi) =

8
><

>:

1 dist(x, yi) > ��

0 dist(x, yi)  �

⇤ otherwise

(weakly independence)

t = ⌦

log�

log

sw
n log

!

t = ⌦

✓
n log

w + log s

◆
or

Theorem

If f has an average-case (s,w,t)-cell-probing scheme under μ×μn

Assume:
• density of 0s in g is ≤0.99/n under μ×μ;
• g has no 1-rectangle A×B with μ(A)≥1/Φ and μ(B)≥1/Ψ.

f(x, y) =
n̂

i=1

g(x, yi)

distributions μ over X, μ over X, μn over Y = Xn

(γ, λ)-ANN:

g(x, yi) =

8
><

>:

1 dist(x, yi) > ��

0 dist(x, yi)  �

⇤ otherwise

(weakly independence)

((Φ, Ψ)-expanding)

t = ⌦

log�

log

sw
n log

!

t = ⌦

✓
n log

w + log s

◆
or

Theorem

If f has an average-case (s,w,t)-cell-probing scheme under μ×μn

f(x, y) =
n̂

i=1

g(x, yi)(γ, λ)-ANN:

g(x, yi) =

8
><

>:

1 dist(x, yi) > ��

0 dist(x, yi)  �

⇤ otherwise

Assume:
• density of 0s in g is ≤0.99/n under μ×μ;
• g has no 1-rectangle A×B with μ(A)≥1/Φ and μ(B)≥1/Ψ.

distributions μ over X, μ over X, μn over Y = Xn

• γλ-neighborhoods are weakly independent under μ:
μ(Nγλ(x)) < 0.99/n for ∀x ∈ X

f(x, y) =
n̂

i=1

g(x, yi)(γ, λ)-ANN:

g(x, yi) =

8
><

>:

1 dist(x, yi) > ��

0 dist(x, yi)  �

⇤ otherwise

Assume:
• density of 0s in g is ≤0.99/n under μ×μ;
• g has no 1-rectangle A×B with μ(A)≥1/Φ and μ(B)≥1/Ψ.

distributions μ over X, μ over X, μn over Y = Xn

• γλ-neighborhoods are weakly independent under μ:
μ(Nγλ(x)) < 0.99/n for ∀x ∈ X

• λ-neighborhoods are (Φ,Ψ)-expanding under μ:
∀A⊆X, μ(A) ≥ 1/Φ ⇒ μ(Nλ(A)) ≥ 1-1/Ψ

f(x, y) =
n̂

i=1

g(x, yi)(γ, λ)-ANN:

g(x, yi) =

8
><

>:

1 dist(x, yi) > ��

0 dist(x, yi)  �

⇤ otherwise

Assume:
• density of 0s in g is ≤0.99/n under μ×μ;
• g has no 1-rectangle A×B with μ(A)≥1/Φ and μ(B)≥1/Ψ.

distributions μ over X, μ over X, μn over Y = Xn

Assume:
• γλ-neighborhoods are weakly independent under μ;
• λ-neighborhoods are (Φ,Ψ)-expanding under μ.
If (γ,λ)-ANN has avg.-case (s,w,t)-cell-probing scheme under μ×νn

t = ⌦

log�

log

sw
n log

!

t = ⌦

✓
n log

w + log s

◆
or

Theorem

metric space (X,dist), distribution μ over X:

• γλ-neighborhoods are weakly independent under μ:
μ(Nγλ(x)) < 0.99/n for ∀x ∈ X

• λ-neighborhoods are (Φ,Ψ)-expanding under μ:
∀A⊆X, μ(A) ≥ 1/Φ ⇒ μ(Nλ(A)) ≥ 1-1/Ψ

Hamming space X={0,1}d, uniform distribution μ over X:

Hamming space X={0,1}d, uniform distribution μ over X:

�� = d
2 �

p
2d ln(2n)choose

Hamming space X={0,1}d, uniform distribution μ over X:

• γλ-neighborhoods are weakly independent under μ:
μ(Nγλ(x)) < 0.99/n for ∀x ∈ X

�� = d
2 �

p
2d ln(2n)choose

Hamming space X={0,1}d, uniform distribution μ over X:

• γλ-neighborhoods are weakly independent under μ:
μ(Nγλ(x)) < 0.99/n for ∀x ∈ X

�� = d
2 �

p
2d ln(2n)choose

Harper’s Isoperimetric inequality:

∀A⊆X, μ(A) ≥ μ(Nr(0)) ⇒ μ(Nλ(A)) ≥ μ(Nr+λ(0))
“Hamming balls have the smallest vertex-expansion.”

Hamming space X={0,1}d, uniform distribution μ over X:

• γλ-neighborhoods are weakly independent under μ:
μ(Nγλ(x)) < 0.99/n for ∀x ∈ X

• λ-neighborhoods are (2Θ(d), 2Θ(d))-expanding under μ:
∀A⊆X, μ(A) ≥ 2-Θ(d) ⇒ μ(Nλ(A)) ≥ 1-2-Θ(d)

�� = d
2 �

p
2d ln(2n)choose

Harper’s Isoperimetric inequality:

∀A⊆X, μ(A) ≥ μ(Nr(0)) ⇒ μ(Nλ(A)) ≥ μ(Nr+λ(0))
“Hamming balls have the smallest vertex-expansion.”

or

Hamming space X={0,1}d, uniform distribution μ over X:

• γλ-neighborhoods are weakly independent under μ:
μ(Nγλ(x)) < 0.99/n for ∀x ∈ X

• λ-neighborhoods are (2Θ(d), 2Θ(d))-expanding under μ:
∀A⊆X, μ(A) ≥ 2-Θ(d) ⇒ μ(Nλ(A)) ≥ 1-2-Θ(d)

�� = d
2 �

p
2d ln(2n)choose

t = ⌦

✓
d

log

sw
nd

◆
t = ⌦

✓
nd

w + log s

◆

Harper’s Isoperimetric inequality:

∀A⊆X, μ(A) ≥ μ(Nr(0)) ⇒ μ(Nλ(A)) ≥ μ(Nr+λ(0))
“Hamming balls have the smallest vertex-expansion.”

Certificates in Data Structures

certificate: the cells whose contents uniquely identify the answer

Certificates in Data Structures

for one-dimensional nearest neighbor search
(predecessor search)

certificate: the cells whose contents uniquely identify the answer

Certificates in Data Structures

for one-dimensional nearest neighbor search
(predecessor search)

assuming the data structure is the sorted table:

certificate: the cells whose contents uniquely identify the answer

Certificates in Data Structures

for one-dimensional nearest neighbor search
(predecessor search)

assuming the data structure is the sorted table:

certificate: the cells whose contents uniquely identify the answer

Certificates in Data Structures

for one-dimensional nearest neighbor search
(predecessor search)

assuming the data structure is the sorted table:

certifies the nearest neighbor of “8.5”

certificate: the cells whose contents uniquely identify the answer

deterministic randomized

exact

approx.

Lower Bounds for Hamming NNS
Hamming space X = {0, 1}d database y 2 Xn

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

logn
log

sw
n

⌘

[Barkol Rabani 2000]

[Pătraşcu Thorup 2006]

[Panigrahy Talwar Wieder 2008, 2010]

[Chakrabarti Regev 2004]

for s = poly(n)

time: t cell-probes; space: s cells, each of w bits

t = ⌦
⇣

d
log

sw
nd

⌘

t = ⇥
⇣

log log d
log log log d

⌘

average-case:

average-case:

worst-case:

worst-case, search problem:

average-case:

average-case:
t = ⌦

⇣
d

log

sw
nd

⌘

Thank you!

