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output: database point y; closest to the query point x

applications: database, pattern matching, machine learning, ...
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Hamming space X = {0, 1}d dist(x, 2) = ||z — z||1
Hamming distance

Curse of dimensionality!
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data structure problem:

f: XxY—~Z7 query:L*EX
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where > = {0,1}"

protocol: the pair (A, T)
(s, w, )=cell-probing scheme
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Average-Case Lower Bounds

data structure problem: f: X xY — 7

(x,y) is sampled from a distribution D over XxY

® deterministic or Les Vegas randomized algorithm:
f(x,y) is returned in 7(x,y) cell-probes

® Kp[r(x,y)] =t
® Monte Carlo randomized algorithm:
® Pr| f(x.y) is correctly returned in 7 cell-probes] > 2/3

® |n data-dependent LSH [Andoni Razenshteyn 2015]:
a key step is to solve the problem on random input.
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metric space (X,dist)

A-neighborhood: Vx € X, denote N;(x) = {z € X | dist(x,7) < 1}
VACX, denote N;(A) = {z € X | AxEA st. dist(x,z) < A}

u: probability distribution over X
In 2 metric space (X,dist), we say:

* A-neighborhoods are weakly independent under u:
VxeE X, u(N;(x)) <0.99/n

* A-neighborhoods are (®,WV)-expanding under u:
VACX, u(A)=1/® = u(N,(A)) = 1-1/¥

vertex expansion, "blow-up” effect
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s > - : ~

re X ( ¢ yeyY

b bits in total < h

|a.,b]-protocol: Alice sends a total of <a bits
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(s,w,t)-cell-probing scheme > [ log s, tw]-protocol
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data structure problem f: X xY — {0,1}
Y = /7 : database y=(yi,....,yn) where y; € Z

point-wise function: ¢g: X x Z — {0,1}

n

f(@,y) = N\ g(z, )

i=1
(y,A4)-ANN: X =Z is the metric space
1 dist(z,y;) > YA
g(z,y;) =<0 dist(z,y;) < A

* otherwise

Examples: partial match, membership, range query, ...
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log ®
::> t—Q( ogsw ) or tZQ(nlog\If>
log

n log ¥ w + log s
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V”(B,) > 2-0O(Alog (s/A) + Aw) > 1/1Pn

log W
case 1: A < 320000t IZ{> t={ (wnﬁig S)

case 2: otherwise ™ > 1/® > u(A) = 2-01og (/)
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i=1 |
Assume: bound | fis 0.01-dense
e density of Os in g is <0.99/n under uxv; =>>| under uxv"
* ¢ has no I-rectangle AxB with u(A)=1/® and v(B)=1/W.

New Richness lemma YV A €[320000¢,s],

Jis 0.01-dense under zxv* >f has 1-rectangle AXB’ with
f has average-case (s,w,f)- U(A) = 2-0(tlog (s/))
cell-probing scheme under uxv” v(B”) = 2-0(Alog (s/4) + Aw)

choose A-o0(2%)na(2En) to satisfy

w-+log s

V”(B,) > 2-0O(Alog (s/A) + Aw) > 1/1Pn

log W
case 1: A < 320000t IZ{> t={ (wnﬁig S)

log @
case 2: otherwise :{> 1/®D > u(A) = 2-0@log (S/A>>I:{> t = (1 Ogsw )

0g n log W




data structure problem f: X x Z" — {0,1}

flz,y) = /\ g(, ;)

with point-wise function g: X x Z — {0,1}

distributions 1« over X, v over Z, v over Y = /"

Theorem

Assume:

* density of Os in g is <0.99/n under uxv;
* ¢ has no I-rectangle AxB with u(A)=1/® and v(B)=1/W.

If f has an average-case (s,w,f)-cell-probing scheme under uxv”

log ®
::> t—Q( ogsw ) or tZQ(nlog\If>
log

n log ¥ w + log s
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(7. 2)-ANN:  f(z,y) = N\ g(z, ;)

1

1

ek

dist(x, y;) > YA
dist(x,y;) < A

x otherwise

-

g(x,y:) =
distributions 1 over X, 1 over X, 1" over Y = X"

Theorem

Assume:

* density of Os in g is <0.99/n under uxu;
* ¢ has no l-rectangle AxB with u(A)=1/® and u(B)=1/W.

If f has an average-case (s,w.f)-cell-probing scheme under uxu”

log ®
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log
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(7. 2)-ANN:  f(z,y) = N\ g(z, ;)

1

1

ek

dist(x, y;) > YA
dist(x,y;) < A

x otherwise

-

g(x,y:) =
distributions 1 over X, 1 over X, 1" over Y = X"

Theorem

Assume:
e density of Os in g is <0.99/n under uxu; (weakly independence)
* ¢ has no l-rectangle AxB with u(A)=1/® and u(B)=1/W.

If f has an average-case (s,w.f)-cell-probing scheme under uxu”

log ®
::> t—Q( ogsw ) or tZQ(nlog\P>
log

n log ¥ w + log s
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(7. 2)-ANN:  f(z,y) = N\ g(z, ;)

1

1

ek

dist(x, y;) > YA
dist(x,y;) < A

x otherwise

-

g(x,y:) =
distributions 1 over X, 1 over X, 1" over Y = X"

Theorem

Assume:
e density of Os in g is <0.99/n under uxu; (weakly independence)

* ¢ has no l-rectangle AxB with u(A)=1/® and u(B)=1/W.
(D, W)-expanding)
If f has an average-case (s,w.f)-cell-probing scheme under zxu"

log ®
::> t—Q( ogsw ) or tZQ(nlog\If>
log

n log ¥ w + log s
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(7. 2)-ANN:  f(z,y) = N\ g(z, ;)

1

1

ek

dist(x, y;) > YA
dist(x,y;) < A

x otherwise

-

g(mayi) —

distributions 1 over X, 1 over X, 1" over Y = X"

Assume:

* density of Os in g is <0.99/n under uxu;
* ¢ has no 1l-rectangle AxB with u(A)=1/® and u(B)=1/W.
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(7. 2)-ANN:  f(z,y) = N\ g(z, ;)

1

1

ek

dist(x, y;) > YA
dist(x,y;) < A

x otherwise

-

g(mayi) —

distributions 1 over X, 1 over X, 1" over Y = X"

Assume:

density of Os in g is <0.99/n under uxu;
(: g has no 1-rectangle AxB with u(A)=1/® and u(B)=1/W.

‘e v 1-neighborhoods are weakly independent under u:
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n

(7. 2)-ANN:  f(z,y) = N\ g(z, ;)

1

1

ek

dist(x, y;) > YA
dist(x,y;) < A

x otherwise

-

g(mayi) —

distributions 1 over X, 1 over X, 1" over Y = X"

Assume:

» density of Os in g is <0.99/n under uxu;
{,* g has no 1-rectangle AxB with u(A)=1/® and u(B)=1/W.

vA-neighborhoods are weakly independent under u:
U(N,(x)) <0.99/n for Vx€X

~ A-neighborhoods are (®,W)-expanding under u:
VACKX, u(A) = 1/® = u(Ni(A)) = 1-1/W¥W



metric space (X,dist), distribution u over X:

* vA-neighborhoods are weakly independent under u:
U(Ny1(x)) <0.99/n for Vx € X

* A-neighborhoods are (®,WV)-expanding under u:
VACKX, u(A) = 1/® = u(Ni(A)) = 1-1/W

Theorem
Assume:

e yA-neighborhoods are weakly independent under u;
e A-neighborhoods are (®,W)-expanding under u.

If (y,A)-ANN has avg.-case (s,wt)-cell-probing scheme under uxv"

log ®
::> t—Q( ogsw ) or tZQ(nlog\If>
log

n log ¥ w + log s
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Hamming space X={0,1}4, uniform distribution u over X:

choose YA = % — v/2d1n(2n)

* yA-neighborhoods are weakly independent under u:
u(N,i(x)) <0.99/nfor Vx € X

Harper’s Isoperimetric inequality:
VACX, u(A) = u(NA0)) = u(Ni(A)) = u(N,+1(0))

“Hamming balls have the smallest vertex-expansion.”
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Hamming space X={0,1}4, uniform distribution u over X:

choose YA = g — v/2d1n(2n)

* yA-neighborhoods are weakly independent under u:
u(N,i(x)) <0.99/nfor Vx € X

Harper’s Isoperimetric inequality:
VACX, u(A) = u(NA0)) = u(Ni(A)) = u(N,+1(0))

“Hamming balls have the smallest vertex-expansion.”

* A-neighborhoods are (29, 29(@)-expanding under u:
VACKX, u(A) = 2-9d = y(Ni(A)) = 1-2-6@

> c-algly) « (k)

log == w + log s
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(predecessor search)

assuming the data structure is the sorted table:
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Certificates in Data Structures

for one-dimensional nearest neighbor search
(predecessor search)

assuming the data structure is the sorted table:

ZQQQ | o v
\ 4
“ e A'A

¥ 62 XS

-

certifies the nearest neighbor of “8.5”

certificate: the cells whose contents uniquely identify the answer



Lower Bounds for Hamming NNS

Hamming space X = {0, 1}¢

time: t cell-probes;

database y € X"

space: s cells, each of w bits

deterministic

randomized

average-case:

average-case:

t =0 (logs) [Barkol Rabani 2000

exact d worst-case:
t = () log =% e d
nd t= (log sw ) [Patrascu Thorup 2006]
worst-case, search problem:
- log log d — ]
average_CaSe: T = @ (log log logd) for s po Y(n)
approx. p [Chakrabarti Regev 2004]
t =1 (log %) average-case: ¢ = () ( log )

log =7

|Panigrahy Talwar Wieder 2008, 2010]







