Rectangle Inequalities for Data Structure Lower Bounds

Yitong Yin Nanjing University

Nexus of Information and Computation Theories Fundamental Inequalities and Lower Bounds Theme @ Institut Henri Poincaré

Online Note

"Yitong Yin: Simple average-case lower bounds for approximate near-neighbor from isoperimetric inequalities."

http://arxiv.org/abs/1602.05391

metric space (X,dist)

metric space (X, dist)

$$\boldsymbol{y} = (y_1, y_2, \dots, y_n) \in X^n$$

metric space (X, dist)

database

$$\mathbf{y} = (y_1, y_2, \dots, y_n) \in X^n$$

data structure

metric space (X, dist)

query
$$x \in X$$

database

$$\mathbf{y} = (y_1, y_2, \dots, y_n) \in X^n$$

data structure

metric space (X, dist)

database

$$\boldsymbol{y} = (y_1, y_2, \dots, y_n) \in X^n$$

data structure

output: database point y_i closest to the query point x

metric space (X, dist)

database

$$\boldsymbol{y} = (y_1, y_2, \dots, y_n) \in X^n$$

data structure

output: database point y_i closest to the query point x

applications: database, pattern matching, machine learning, ...

Near Neighbor Problem

 $(\lambda - NN)$

metric space (X, dist)

database

$$\boldsymbol{y} = (y_1, y_2, \dots, y_n) \in X^n$$

query
$$x \in X$$

data structure

Near Neighbor Problem

 $(\lambda - NN)$

metric space (X, dist)

database

$$\mathbf{y} = (y_1, y_2, \dots, y_n) \in X^n$$

query
$$x \in X$$

$$\downarrow \text{access}$$

data structure

Near Neighbor Problem

 $(\lambda - NN)$

metric space (X, dist)

database

$$\boldsymbol{y} = (y_1, y_2, \dots, y_n) \in X^n$$

data structure

 λ -NN: answer "yes" if $\exists y_i$ that is λ -close to x "no" if all y_i are λ -faraway from x

Approximate Near Neighbor (ANN)

metric space (X, dist)

database

$$\mathbf{y} = (y_1, y_2, \dots, y_n) \in X^n$$

$$\begin{array}{c} \mathbf{query} \ x \in X \\ & \downarrow \mathrm{access} \end{array}$$

data structure

Approximate Near Neighbor (ANN)

metric space (X, dist)

database

$$\boldsymbol{y} = (y_1, y_2, \dots, y_n) \in X^n$$

data structure

 (γ, λ) -ANN: answer "yes" if $\exists y_i$ that is λ -close to x "no" if all y_i are $\gamma\lambda$ -faraway from x arbitrary if otherwise

Approximate Near Neighbor

metric space (X, dist)

database

$$\boldsymbol{y} = (y_1, y_2, \dots, y_n) \in X^n$$

data structure

Hamming space
$$X = \{0, 1\}^d$$

$$\operatorname{dist}(x,z) = \|x - z\|_1$$

Hamming distance

Approximate Near Neighbor

metric space (X, dist)

database

$$\boldsymbol{y} = (y_1, y_2, \dots, y_n) \in X^n$$

data structure

Hamming space
$$X = \{0, 1\}^d$$

$$dist(x,z) = ||x - z||_1$$

Hamming distance

Curse of dimensionality!

data structure problem:

$$f: X \times Y \to Z$$

$$y \in Y$$

data structure problem:

$$f: X \times Y \to Z$$

$$y \in Y$$

data structure problem:

$$f: X \times Y \to Z$$

query $x \in X$

$$y \in Y$$

where
$$\Sigma = \{0,1\}^w$$

data structure problem:

 $f: X \times Y \to Z$

$$T:Y\to \Sigma^{\mathcal{S}}$$
 where $\Sigma=\{0,1\}^w$

data structure problem:

$$f: X \times Y \to Z$$

database

protocol: the pair (A, T)

data structure problem:

$$f: X \times Y \to Z$$

database

protocol: the pair (A, T)

(s, w, t)-cell-probing scheme

Hamming space $X = \{0,1\}^d$ database $y \in X^n$

time: t cell-probes; space: s cells, each of w bits

	deterministic	randomized
exact		
approx.		

Hamming space $X = \{0,1\}^d$ database $y \in X^n$

time: t cell-probes; space: s cells, each of w bits

	deterministic	randomized
	$t = \Omega\left(\frac{d}{\log s}\right)$ [Miltersen <i>et al.</i> 1995]	
exact		
approx.		

Hamming space $X = \{0,1\}^d$ database $y \in X^n$

time: t cell-probes;

	deterministic	randomized
	$t = \Omega\left(\frac{d}{\log s}\right)$ [Miltersen <i>et al.</i> 1995]	$t = \Omega\left(\frac{d}{\log s}\right)$ [Barkol Rabani 2000]
exact		
	$t = \Omega\left(\frac{d}{\log s}\right) \text{[Liu 2004]}$	
approx.		

Hamming space $X = \{0,1\}^d$ database $y \in X^n$

time: t cell-probes;

	deterministic	randomized
	$t = \Omega\left(\frac{d}{\log s}\right)$ [Miltersen <i>et al.</i> 1995]	$t = \Omega\left(\frac{d}{\log s}\right)$ [Barkol Rabani 2000]
exact		
approx.	$t = \Omega\left(\frac{d}{\log s}\right) \text{[Liu 2004]}$	$t = \Theta\left(\frac{\log\log d}{\log\log\log d}\right)$ for $s = \text{poly}(n)$ [Chakrabarti Regev 2004]

Hamming space $X = \{0,1\}^d$ database $y \in X^n$

time: t cell-probes;

	deterministic	randomized
	$t = \Omega\left(\frac{d}{\log s}\right)$ [Miltersen <i>et al.</i> 1995]	$t = \Omega\left(\frac{d}{\log s}\right)$ [Barkol Rabani 2000]
exact	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]
	$t = \Omega\left(\frac{d}{\log s}\right) \text{[Liu 2004]}$	$t = \Theta\left(\frac{\log\log d}{\log\log\log d}\right) \text{ for } s = \text{poly}(n)$
approx.	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]	[Chakrabarti Regev 2004]

Hamming space $X = \{0,1\}^d$ database $y \in X^n$

time: t cell-probes;

	deterministic	randomized
	$t = \Omega\left(\frac{d}{\log s}\right)$ [Miltersen <i>et al.</i> 1995]	$t = \Omega\left(\frac{d}{\log s}\right)$ [Barkol Rabani 2000]
exact	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]
	$t = \Omega\left(\frac{d}{\log s}\right) \text{[Liu 2004]}$	$t = \Theta\left(\frac{\log\log d}{\log\log\log d}\right) \text{ for } s = \text{poly}(n)$
approx.	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătraşcu Thorup 2006]	[Chakrabarti Regev 2004]
		$t = \Omega\left(\frac{\log n}{\log \frac{sw}{n}}\right)$ [Panigrahy Talwar Wieder 2008, 2010]
		[1 amgrany Taiwar Wieder 2000, 2010]

Hamming space $X = \{0,1\}^d$ database $y \in X^n$

time: t cell-probes;

	deterministic	randomized
	$t = \Omega\left(\frac{d}{\log s}\right)$ [Miltersen <i>et al.</i> 1995]	$t = \Omega\left(\frac{d}{\log s}\right)$ [Barkol Rabani 2000]
exact	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]
	$t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right)$ [Wang Y. 2014]	
	$t = \Omega\left(\frac{d}{\log s}\right) \text{[Liu 2004]}$	$t = \Theta\left(\frac{\log\log d}{\log\log\log d}\right) \text{ for } s = \text{poly}(n)$
approx.	$t = \Omega\left(\frac{d}{\log \frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]	[Chakrabarti Regev 2004]
	$t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right)$ [Wang Y. 2014]	$t = \Omega\left(\frac{\log n}{\log \frac{sw}{n}}\right)$ [Panigrahy Talwar Wieder 2008, 2010]

Hamming space $X = \{0, 1\}^d$ database $y \in X^n$

time: t cell-probes; space: s cells, each of w bits

	deterministic	randomized
	$t = \Omega\left(\frac{d}{\log s}\right)$ [Miltersen <i>et al.</i> 1995]	$t = \Omega\left(\frac{d}{\log s}\right)$ [Barkol Rabani 2000]
exact	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]
	$t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right)$ [Wang Y. 2014]	
	$t = \Omega\left(\frac{d}{\log s}\right) \text{[Liu 2004]}$	$t = \Theta\left(\frac{\log\log d}{\log\log\log d}\right) \text{ for } s = \text{poly}(n)$
approx.	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]	[Chakrabarti Regev 2004] $t = \Omega\left(\frac{\log n}{\log \frac{sw}{n}}\right)$ for search problem
	$t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right)$ [Wang Y. 2014]	$t = \Omega\left(\frac{\log n}{\log \frac{sw}{n}}\right)$ [Panigrahy Talwar Wieder 2008, 2010]

Hamming space $X = \{0,1\}^d$ database $y \in X^n$

time: t cell-probes;

	deterministic	randomized
	$t = \Omega\left(\frac{d}{\log s}\right)$ [Miltersen <i>et al.</i> 1995]	$t = \Omega\left(\frac{d}{\log s}\right)$ [Barkol Rabani 2000]
exact	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]
	$t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right)$ [Wang Y. 2014]	
	$t = \Omega\left(\frac{d}{\log s}\right) \text{[Liu 2004]}$	$t = \Theta\left(\frac{\log\log d}{\log\log\log d}\right) \text{ for } s = \text{poly}(n)$
approx.	$t = \Omega\left(\frac{d}{\log \frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]	[Chakrabarti Regev 2004]
	$t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right)$ [Wang Y. 2014]	$t = \Omega\left(\frac{\log n}{\log \frac{sw}{n}}\right)$ [Panigrahy Talwar Wieder 2008, 2010]

Hamming space $X = \{0,1\}^d$ database $y \in X^n$

time: t cell-probes;

	deterministic	randomized
	$t = \Omega\left(\frac{d}{\log s}\right)$ [Miltersen <i>et al.</i> 1995]	$t = \Omega\left(\frac{d}{\log s}\right)$ [Barkol Rabani 2000]
exact	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]
	$t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right)$ [Wang Y. 2014]	
	$t = \Omega\left(\frac{d}{\log s}\right) \text{[Liu 2004]}$	$t = \Theta\left(\frac{\log\log d}{\log\log\log d}\right) \text{ for } s = \text{poly}(n)$
approx.	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]	[Chakrabarti Regev 2004]
	$t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right)$ [Wang Y. 2014]	$t = \Omega\left(\frac{\log n}{\log \frac{sw}{n}}\right)$ by round elimination [Panigrahy Talwar Wieder 2008, 2010]

- deterministic or Les Vegas randomized algorithm: f(x,y) is returned in t(x,y) cell-probes
 - $\mathbf{E}_D[t(x,y)] \leq t$

- deterministic or Les Vegas randomized algorithm: f(x,y) is returned in t(x,y) cell-probes
 - $\mathbf{E}_D[t(x,y)] \leq t$
- Monte Carlo randomized algorithm:
 - Pr[f(x,y) is correctly returned in t cell-probes] > 2/3

- deterministic or Les Vegas randomized algorithm: f(x,y) is returned in t(x,y) cell-probes
 - $\mathbf{E}_D[t(x,y)] \leq t$
- Monte Carlo randomized algorithm:
 - Pr[f(x,y) is correctly returned in t cell-probes] > 2/3
- In data-dependent LSH [Andoni Razenshteyn 2015]: a key step is to solve the problem on random input.

Hamming space $X = \{0, 1\}^d$ database $y \in X^n$

time: t cell-probes; space: s cells, each of w bits

	deterministic	randomized
	$t = \Omega\left(\frac{d}{\log s}\right)$ [Miltersen <i>et al.</i> 1995]	$t = \Omega\left(\frac{d}{\log s}\right)$ [Barkol Rabani 2000]
exact	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătraşcu Thorup 2006]
	$t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right)$ [Wang Y. 2014]	
	$t = \Omega\left(\frac{d}{\log s}\right) \text{[Liu 2004]}$	$t = \Theta\left(\frac{\log\log d}{\log\log\log d}\right)$ for $s = \text{poly}(n)$
approx.	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătraşcu Thorup 2006]	[Chakrabarti Regev 2004]
	$t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right)$ [Wang Y. 2014]	$t = \Omega\left(\frac{\log n}{\log \frac{sw}{n}}\right)$ [Panigrahy Talwar Wieder 2008, 2010]

Hamming space $X = \{0, 1\}^d$ database $y \in X^n$

	deterministic	randomized
	$t = \Omega\left(\frac{d}{\log s}\right)$ [Miltersen <i>et al.</i> 1995]	$t = \Omega\left(\frac{d}{\log s}\right)$ [Barkol Rabani 2000]
exact	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]	$t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right)$ [Pătraşcu Thorup 2006]
	$t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right)$ [Wang Y. 2014]	
	$t = \Omega\left(\frac{d}{\log s}\right) \text{[Liu 2004]}$	$t = \Theta\left(\frac{\log\log d}{\log\log\log d}\right) \text{ for } s = \text{poly}(n)$
approx.	$t = \Omega\left(\frac{d}{\log \frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006]	[Chakrabarti Regev 2004]
	$t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right)$ [Wang Y. 2014]	$t = \Omega\left(\frac{\log n}{\log \frac{sw}{n}}\right)$ average-case [Panigrahy Talwar Wieder 2008, 2010]

Hamming space $X = \{0, 1\}^d$ database $y \in X^n$

	deterministic	randomized
exact	$t = \Omega\left(\frac{d}{\log s}\right) \text{ [Miltersen $\it{et al}$.1995]}$ $t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right) \text{[Pătraşcu Thorup 2006]}$ $t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right) \text{ [Wang Y. 2014]}$	$t = \Omega\left(rac{d}{\log s} ight)$ [Barkol Rabani 2000] average-case $t = \Omega\left(rac{d}{\log rac{sw}{n}} ight)$ [Pătraşcu Thorup 2006]
approx.	$t = \Omega\left(\frac{d}{\log s}\right) \text{[Liu 2004]}$ $t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right) \text{[Pătrașcu Thorup 2006]}$ $t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right) \text{[Wang Y. 2014]}$	$t = \Theta\left(\frac{\log\log d}{\log\log\log d}\right) \text{ for } s = \text{poly}(n)$ [Chakrabarti Regev 2004] $t = \Omega\left(\frac{\log n}{\log\frac{sw}{n}}\right) \text{ average-case}$ [Panigrahy Talwar Wieder 2008, 2010]

Hamming space $X = \{0, 1\}^d$ database $y \in X^n$

	deterministic	randomized
exact	$t = \Omega\left(\frac{d}{\log s}\right) \text{ [Miltersen $\it{et al}$.1995]}$ $t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right) \text{[Pătraşcu Thorup 2006]}$ $t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right) \text{ [Wang Y. 2014]}$	$t = \Omega\left(rac{d}{\log s} ight)$ [Barkol Rabani 2000] average-case $t = \Omega\left(rac{d}{\log rac{sw}{n}} ight)$ [Pătrașcu Thorup 2006]
approx.	$t = \Omega\left(\frac{d}{\log s}\right) \text{[Liu 2004]}$ $t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right) \text{[Pătraşcu Thorup 2006]}$ $t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right) \text{[Wang Y. 2014]}$	$t = \Theta\left(\frac{\log\log d}{\log\log\log d}\right) \text{ for } s = \text{poly}(n)$ [Chakrabarti Regev 2004] worst-case $t = \Omega\left(\frac{\log n}{\log\frac{sw}{n}}\right) \text{ average-case}$ [Panigrahy Talwar Wieder 2008, 2010]

Hamming space $X = \{0, 1\}^d$ database $y \in X^n$

	deterministic	randomized
exact	$t = \Omega\left(\frac{d}{\log s}\right) \text{ [Miltersen $\it{et al}$.1995]}$ $t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right) \text{[Pătraşcu Thorup 2006]}$ $t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right) \text{ [Wang Y. 2014]}$	$t = \Omega\left(rac{d}{\log s} ight)$ [Barkol Rabani 2000] average-case $t = \Omega\left(rac{d}{\log rac{sw}{n}} ight)$ [Pătraşcu Thorup 2006] worst-case
approx.	$t = \Omega\left(\frac{d}{\log s}\right) \text{[Liu 2004]}$ $t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right) \text{[Pătraşcu Thorup 2006]}$ $t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right) \text{[Wang Y. 2014]}$	$t = \Theta\left(\frac{\log\log d}{\log\log\log d}\right) \text{ for } s = \text{poly}(n)$ [Chakrabarti Regev 2004] worst-case $t = \Omega\left(\frac{\log n}{\log\frac{sw}{n}}\right) \text{ average-case}$ [Panigrahy Talwar Wieder 2008, 2010]

Hamming space $X = \{0,1\}^d$ database $y \in X^n$

time: t cell-probes;

space: s cells, each of w bits

	deterministic	randomized
exact	$t = \Omega\left(\frac{d}{\log s}\right)$ [Miltersen et al. 1995] $t = \Omega\left(\frac{d}{\log \frac{sw}{n}}\right)$ [Pătrașcu Thorup 2006] $t = \Omega\left(\frac{d}{\log \frac{sw}{nd}}\right)$ [Wang Y. 2014]	$t = \Omega\left(rac{d}{\log s} ight)$ [Barkol Rabani 2000] average-case $t = \Omega\left(rac{d}{\log rac{sw}{n}} ight)$ [Pătraşcu Thorup 2006] worst-case
approx.	$t = \Omega\left(\frac{d}{\log s}\right) \text{[Liu 2004]}$ $t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right) \text{[Pătrașcu Thorup 2006]}$ $t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right) \text{[Wang Y. 2014]}$	$t = \Theta\left(\frac{\log\log d}{\log\log\log d}\right) \text{ for } s = \text{poly}(n)$ [Chakrabarti Regev 2004] worst-case $t = \Omega\left(\frac{\log n}{\log\frac{sw}{n}}\right) \text{ average-case}$ [Panigrahy Talwar Wieder 2008, 2010]

worst-case

deterministic or LV randomized algorithm for

 (γ, λ) -ANN in Hamming space $\{0,1\}^d$

deterministic or LV randomized algorithm for

 (γ, λ) -ANN in Hamming space $\{0,1\}^d$

that solves the problem with t cell-probes in expectation on a table of $s < 2^d$ cells, each of $w < n^{o(1)}$ bits, under the hard distribution:

deterministic or LV randomized algorithm for

 (γ, λ) -ANN in Hamming space $\{0,1\}^d$

that solves the problem with t cell-probes in expectation on a table of $s < 2^d$ cells, each of $w < n^{o(1)}$ bits, under the hard distribution:

database: $y=(y_1, y_2,...,y_n)$ with $y_i \in \{0,1\}^d$ i.i.d. uniform query: uniform and independent $x \in \{0,1\}^d$

deterministic or LV randomized algorithm for

 (γ, λ) -ANN in Hamming space $\{0,1\}^d$

that solves the problem with t cell-probes in expectation on a table of $s < 2^d$ cells, each of $w < n^{o(1)}$ bits, under the hard distribution:

database: $y=(y_1, y_2,...,y_n)$ with $y_i \in \{0,1\}^d$ i.i.d. uniform query: uniform and independent $x \in \{0,1\}^d$

$$t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right)$$

metric space (X, dist)

```
\lambda-neighborhood: \forall x \in X, denote N_{\lambda}(x) = \{z \in X \mid \text{dist}(x,z) \leq \lambda\} \forall A \subseteq X, denote N_{\lambda}(A) = \{z \in X \mid \exists x \in A \text{ s.t. dist}(x,z) \leq \lambda\}
```

metric space (X, dist)

```
\lambda-neighborhood: \forall x \in X, denote N_{\lambda}(x) = \{z \in X \mid \text{dist}(x,z) \leq \lambda\}
\forall A \subseteq X, denote N_{\lambda}(A) = \{z \in X \mid \exists x \in A \text{ s.t. dist}(x,z) \leq \lambda\}
```

 μ : probability distribution over X

metric space (X, dist)

```
\lambda-neighborhood: \forall x \in X, denote N_{\lambda}(x) = \{z \in X \mid \text{dist}(x,z) \leq \lambda\} \forall A \subseteq X, denote N_{\lambda}(A) = \{z \in X \mid \exists x \in A \text{ s.t. dist}(x,z) \leq \lambda\}
```

 μ : probability distribution over X

In a metric space (X, dist), we say:

• λ -neighborhoods are weakly independent under μ : $\forall x \in X, \ \mu(N_{\lambda}(x)) < 0.99/n$

metric space (X,dist)

```
\lambda-neighborhood: \forall x \in X, denote N_{\lambda}(x) = \{z \in X \mid \text{dist}(x,z) \leq \lambda\}
\forall A \subseteq X, denote N_{\lambda}(A) = \{z \in X \mid \exists x \in A \text{ s.t. dist}(x,z) \leq \lambda\}
```

 μ : probability distribution over X

In a metric space (X, dist), we say:

- λ -neighborhoods are weakly independent under μ : $\forall x \in X, \ \mu(N_{\lambda}(x)) < 0.99/n$
- λ -neighborhoods are (Φ, Ψ) -expanding under μ : $\forall A \subseteq X$, $\mu(A) \ge 1/\Phi \Rightarrow \mu(N_{\lambda}(A)) \ge 1-1/\Psi$

metric space (X,dist)

```
\lambda-neighborhood: \forall x \in X, denote N_{\lambda}(x) = \{z \in X \mid \text{dist}(x,z) \leq \lambda\}
\forall A \subseteq X, denote N_{\lambda}(A) = \{z \in X \mid \exists x \in A \text{ s.t. dist}(x,z) \leq \lambda\}
```

 μ : probability distribution over X

In a metric space (X, dist), we say:

- λ -neighborhoods are weakly independent under μ : $\forall x \in X, \ \mu(N_{\lambda}(x)) < 0.99/n$
- λ -neighborhoods are (Φ, Ψ) -expanding under μ : $\forall A \subseteq X, \ \mu(A) \geq 1/\Phi \Rightarrow \mu(N_{\lambda}(A)) \geq 1-1/\Psi$ vertex expansion, "blow-up" effect

deterministic or LV randomized algorithm for (γ, λ) -ANN in metric space (X, dist)

deterministic or LV randomized algorithm for

 (γ, λ) -ANN in metric space (X,dist)

• $\gamma\lambda$ -neighborhoods are weakly independent under μ : $\mu(N_{\gamma\lambda}(x)) < 0.99/n$ for $\forall x \in X$

deterministic or LV randomized algorithm for

 (γ, λ) -ANN in metric space (X,dist)

- $\gamma\lambda$ -neighborhoods are weakly independent under μ : $\mu(N_{\gamma\lambda}(x)) < 0.99/n$ for $\forall x \in X$
- λ -neighborhoods are (Φ, Ψ) -expanding under μ : $\forall A \subseteq X$ that $\mu(A) \ge 1/\Phi \Rightarrow \mu(N_{\lambda}(A)) \ge 1-1/\Psi$

deterministic or LV randomized algorithm for

 (γ, λ) -ANN in metric space (X,dist)

- $\gamma\lambda$ -neighborhoods are weakly independent under μ : $\mu(N_{\gamma\lambda}(x)) < 0.99/n$ for $\forall x \in X$
- λ -neighborhoods are (Φ, Ψ) -expanding under μ : $\forall A \subseteq X$ that $\mu(A) \ge 1/\Phi \Rightarrow \mu(N_{\lambda}(A)) \ge 1-1/\Psi$

deterministic or LV randomized algorithm for

 (γ, λ) -ANN in metric space (X,dist)

Asymmetric Communications

$$f: X \times Y \to \{0, 1\}$$

$$y \in Y$$

Asymmetric Communications

Asymmetric Communications

[a,b]-protocol: Alice sends a total of $\leq a$ bits Bob sends a total of $\leq b$ bits

$$f: X \times Y \to \{0, 1\}$$

 $f: X \times Y \to \{0,1\}$ distributions μ over X, ν over Y

 $f: X \times Y \to \{0,1\}$ distributions μ over X, ν over Y α -dense: density of $1s \geq \alpha$ under $\mu \times \nu$

 $f: X \times Y \to \{0,1\} \quad \text{distributions μ over X, ν over Y}$

 α -dense: density of 1s $\geq \alpha$ under $\mu \times \nu$

monochromatic 1-rectangle: $A \times B$ with $A \subseteq X$, $B \subseteq Y$ $\forall (x,y) \in A \times B$, f(x,y)=1

 $f: X \times Y \to \{0,1\}$ distributions μ over X, ν over Y

 α -dense: density of 1s $\geq \alpha$ under $\mu \times \nu$

monochromatic 1-rectangle: $A \times B$ with $A \subseteq X$, $B \subseteq Y$ $\forall (x,y) \in A \times B, f(x,y)=1$

[a,b]-protocol: Alice sends a total of $\leq a$ bits Bob sends a total of $\leq b$ bits

f is 0.01-dense under
$$\mu$$

$$f \text{ is } 0.01\text{-dense under } \mu\times\nu \} \qquad f \text{ has } 1\text{-rectangle } A\times B \text{ with } \\ f \text{ has } [a,b]\text{-protocol} \qquad \begin{cases} \mu(A) \geq 2^{-\mathrm{O}(a)} \\ \nu(B) \geq 2^{-\mathrm{O}(a+b)} \end{cases}$$

 $f: X \times Y \to \{0,1\}$ distributions μ over X, ν over Y

 α -dense: density of 1s $\geq \alpha$ under $\mu \times \nu$

[a,b]-protocol: Alice sends a total of $\leq a$ bits

Bob sends a total of $\leq b$ bits

f is 0.01-dense under
$$\mu$$

$$f \text{ is } 0.01\text{-dense under } \mu\times\nu \\ f \text{ has } [a,b]\text{-protocol} \end{cases} f \text{ has } 1\text{-rectangle } A\times B \text{ with } \\ \begin{cases} \mu(A) \geq 2^{-\mathrm{O}(a)} \\ \nu(B) \geq 2^{-\mathrm{O}(a+b)} \end{cases}$$

 $f: X \times Y \to \{0,1\}$ distributions μ over X, ν over Y

 α -dense: density of 1s $\geq \alpha$ under $\mu \times \nu$

[a,b]-protocol: Alice sends a total of $\leq a$ bits Bob sends a total of $\leq b$ bits

(s,w,t)-cell-probing scheme $[t \log s, tw]$ -protocol

f is 0.01-dense under
$$\mu$$

$$f \text{ is } 0.01\text{-dense under } \mu\times\nu \\ f \text{ has } [a,b]\text{-protocol} \qquad \begin{cases} f \text{ has } 1\text{-rectangle } A\times B \text{ with} \\ \left\{\mu(A) \geq 2^{-\mathrm{O}(a)} \\ \nu(B) \geq 2^{-\mathrm{O}(a+b)} \end{cases}$$

 $f: X \times Y \to \{0,1\}$ distributions μ over X, ν over Y

 α -dense: density of 1s $\geq \alpha$ under $\mu \times \nu$

[a,b]-protocol: Alice sends a total of $\leq a$ bits Bob sends a total of $\leq b$ bits

(s,w,t)-cell-probing scheme $[t \log s, tw]$ -protocol

$$f \text{ is } 0.01\text{-dense under } \mu \times \nu \\ f \text{ has } 1\text{-rectangle } A \times B \text{ with } \\ f \text{ has } (s,w,t)\text{-cell-probing scheme} \\ \begin{cases} \mu(A) \geq 2\text{-}\mathrm{O}(t\log s) \\ \nu(B) \geq 2\text{-}\mathrm{O}(t\log s + tw) \end{cases}$$

A New Richness Lemma

 $f: X \times Y \to \{0,1\}$ distributions μ over X, ν over Y

```
Richness lemma (Miltersen, Nisan, Safra, Wigderson, 1995)
f \text{ is } 0.01\text{-dense under } \mu \times \nu
f \text{ has } 1\text{-rectangle } A \times B \text{ with }
\{\mu(A) \geq 2^{-O(t \log s)}
\nu(B) \geq 2^{-O(t \log s + tw)}
```

A New Richness Lemma

 $f: X \times Y \to \{0,1\}$ distributions μ over X, ν over Y

```
Richness lemma (Miltersen, Nisan, Safra, Wigderson, 1995)
f \text{ is } 0.01\text{-dense under } \mu \times \nu
f \text{ has } 1\text{-rectangle } A \times B \text{ with }
\{\mu(A) \geq 2^{-O(t \log s)}
\nu(B) \geq 2^{-O(t \log s + tw)}
```

New Richness lemma

 $f \text{ is } 0.01\text{-dense under } \mu \times \nu \\ f \text{ has average-case} \\ f \text{ has } 1\text{-rectangle } A \times B \text{ with} \\ (s,w,t)\text{-cell-probing scheme} \\ \text{under } \mu \times \nu \\ \begin{cases} \mu(A) \geq 2^{-O(t \log{(s/\Delta)})} \\ \nu(B) \geq 2^{-O(\Delta \log{(s/\Delta)} + \Delta w)} \end{cases}$

A New Richness Lemma

 $f: X \times Y \to \{0,1\}$ distributions μ over X, ν over Y

```
Richness lemma (Miltersen, Nisan, Safra, Wigderson, 1995)
f \text{ is } 0.01\text{-dense under } \mu \times \nu
f \text{ has } 1\text{-rectangle } A \times B \text{ with}
\{\mu(A) \geq 2\text{-}O(t \log s)
\nu(B) \geq 2\text{-}O(t \log s + tw)
```

New Richness lemma

```
 \begin{array}{c} f \text{ is } 0.01\text{-dense under } \mu \times \nu \\ f \text{ has average-case} \end{array} \\ \begin{array}{c} \forall \Delta \in [320000t, s], \\ f \text{ has } 1\text{-rectangle } A \times B \text{ with} \\ (s,w,t)\text{-cell-probing scheme} \\ \text{under } \mu \times \nu \end{array} \\ \begin{array}{c} \mu(A) \geq 2^{-O(t \log (s/\Delta))} \\ \nu(B) \geq 2^{-O(\Delta \log (s/\Delta) + \Delta w)} \end{array} \\ \end{array}
```

when $\Delta = O(t)$, it becomes the richness lemma (with slightly better bounds)

New Richness lemma

 $f \text{ is } 0.01\text{-dense under } \mu \times \nu \\ f \text{ has average-case} \end{cases} \qquad \forall \Delta \in [320000t, s], \\ f \text{ has } 1\text{-rectangle } A \times B \text{ with} \\ (s, w, t)\text{-cell-probing scheme} \\ \text{under } \mu \times \nu \end{cases} \qquad \begin{cases} \mu(A) \geq 2^{-O(t \log(s/\Delta))} \\ \nu(B) \geq 2^{-O(\Delta \log(s/\Delta) + \Delta w)} \end{cases}$

New Richness lemma

```
\begin{array}{l} f \text{ is } 0.01\text{-dense under } \mu\times\nu \\ f \text{ has average-case} \end{array} \\ \begin{array}{l} \forall \Delta \in [320000t,s], \\ f \text{ has } 1\text{-rectangle } A\times B \text{ with} \\ (s,w,t)\text{-cell-probing scheme} \\ \text{under } \mu\times\nu \end{array} \\ \begin{array}{l} \mu(A) \geq 2^{-\mathrm{O}(t\log{(s/\Delta)})} \\ \nu(B) \geq 2^{-\mathrm{O}(\Delta\log{(s/\Delta)} + \Delta w)} \end{array} \end{array}
```

 \exists constant fraction (under ν) of "good" databases y:

New Richness lemma

 $f \text{ is } 0.01\text{-dense under } \mu \times \nu \\ f \text{ has average-case} \end{cases} \qquad \forall \Delta \in [320000t, s], \\ f \text{ has } 1\text{-rectangle } A \times B \text{ with} \\ (s, w, t)\text{-cell-probing scheme} \\ \text{under } \mu \times \nu \end{cases} \qquad \begin{cases} \mu(A) \geq 2^{-O(t \log(s/\Delta))} \\ \nu(B) \geq 2^{-O(\Delta \log(s/\Delta) + \Delta w)} \end{cases}$

 \exists constant fraction (under ν) of "good" databases y: \forall good y,

f is 0.01-dense under $\mu \times \nu$ f has average-case (s,w,t)-cell-probing scheme under $\mu \times \nu$

 $\forall \Delta \in [320000t, s],$ $f \text{ has } 1\text{-rectangle } A \times B \text{ with}$ $\begin{cases} \mu(A) \geq 2^{-O(t \log(s/\Delta))} \\ \nu(B) \geq 2^{-O(\Delta \log(s/\Delta) + \Delta w)} \end{cases}$

 \exists constant fraction (under ν) of "good" databases y: \forall good y,

 $\exists \Delta \text{ cells resolving } 2^{-O(t \log (s/\Delta))} \text{ fraction (under } \mu) \text{ positive queries}$

f is 0.01-dense under $\mu \times \nu$ f has average-case (s,w,t)-cell-probing scheme under $\mu \times \nu$

 $\forall \Delta \in [320000t, s],$ $f \text{ has 1-rectangle } A \times B \text{ with}$ $\begin{cases} \mu(A) \ge 2^{-O(t \log(s/\Delta))} \\ \nu(B) \ge 2^{-O(\Delta \log(s/\Delta) + \Delta w)} \end{cases}$

 \exists constant fraction (under ν) of "good" databases y: \forall good y,

 $\exists \Delta \text{ cells resolving } 2^{-O(t \log (s/\Delta))} \text{ fraction (under } \mu) \text{ positive queries}$

 ω : positions & contents of these Δ cells

f is 0.01-dense under $\mu \times \nu$ f has average-case (s,w,t)-cell-probing scheme under $\mu \times \nu$

 $\forall \Delta \in [320000t, s],$ $f \text{ has } 1\text{-rectangle } A \times B \text{ with}$ $\begin{cases} \mu(A) \geq 2^{-O(t \log(s/\Delta))} \\ \nu(B) \geq 2^{-O(\Delta \log(s/\Delta) + \Delta w)} \end{cases}$

 \exists constant fraction (under ν) of "good" databases y: \forall good y,

 $\exists \Delta \text{ cells resolving } 2^{-O(t \log (s/\Delta))} \text{ fraction (under } \mu) \text{ positive queries}$

 $good y \mapsto \omega$

 ω : positions & contents of these Δ cells

f is 0.01-dense under $\mu \times \nu$ f has average-case (s,w,t)-cell-probing scheme under $\mu \times \nu$

 \exists constant fraction (under ν) of "good" databases y: \forall good y,

 $\exists \Delta \text{ cells resolving } 2^{-O(t \log (s/\Delta))} \text{ fraction (under } \mu) \text{ positive queries}$

 ω : positions & contents of these Δ cells

good
$$y\mapsto \omega < \leq {s\choose \Delta} 2^{\Delta w} = 2^{O(\Delta\log\frac{s}{\Delta}+\Delta w)}$$
 possibilities

f is 0.01-dense under $\mu \times \nu$ f has average-case (s,w,t)-cell-probing scheme under $\mu \times \nu$

 \exists constant fraction (under ν) of "good" databases y: \forall good y,

 $\exists \Delta \text{ cells resolving } 2^{-O(t \log (s/\Delta))} \text{ fraction (under } \mu) \text{ positive queries}$

 ω : positions & contents of these Δ cells

good
$$y \mapsto \omega < (s \choose \Delta) 2^{\Delta w} = 2^{O(\Delta \log \frac{s}{\Delta} + \Delta w)}$$
 possibilities

 $\geq 2^{-O(\Delta \log (s/\Delta) + \Delta w)}$ fraction (under ν) good $y \mapsto$ the same ω

f is 0.01-dense under $\mu \times \nu$ f has average-case (s,w,t)-cell-probing scheme under $\mu \times \nu$

 \exists constant fraction (under ν) of "good" databases y: \forall good y,

 $\exists \Delta \text{ cells resolving } 2^{-O(t \log (s/\Delta))} \text{ fraction (under } \mu) \text{ positive queries}$

 ω : positions & contents of these Δ cells

good
$$y \mapsto \omega < \leq \binom{s}{\Delta} 2^{\Delta w} = 2^{O(\Delta \log \frac{s}{\Delta} + \Delta w)}$$
 possibilities

 $\geq 2^{-O(\Delta \log (s/\Delta) + \Delta w)}$ fraction (under ν) good $y \mapsto$ the same ω cell-probe model: once ω is fixed, the set of positive queries resolved by ω is fixed

f is 0.01-dense under $\mu \times \nu$ f has average-case (s,w,t)-cell-probing scheme under $\mu \times \nu$

 \exists constant fraction (under ν) of "good" databases y: \forall good y,

 $\exists \Delta \text{ cells resolving } 2^{-O(t \log (s/\Delta))} \text{ fraction (under } \mu) \text{ positive queries}$

 ω : positions & contents of these Δ cells

good
$$y \mapsto \omega < \leq \binom{s}{\Delta} 2^{\Delta w} = 2^{O(\Delta \log \frac{s}{\Delta} + \Delta w)}$$
 possibilities

 $B: (\geq 2^{-O(\Delta \log (s/\Delta) + \Delta w)})$ fraction (under v) good $y) \mapsto$ the same w cell-probe model: once w is fixed, the set of positive queries resolved by w is fixed

f is 0.01-dense under $\mu \times \nu$ f has average-case (s,w,t)-cell-probing scheme under $\mu \times \nu$

 $\forall \Delta \in [320000t, s],$ $f \text{ has 1-rectangle } A \times B \text{ with}$ $\begin{cases} \mu(A) \ge 2^{-O(t \log(s/\Delta))} \\ \nu(B) \ge 2^{-O(\Delta \log(s/\Delta) + \Delta w)} \end{cases}$

 \exists constant fraction (under ν) of "good" databases y: \forall good y,

 $\exists \Delta \text{ cells resolving } 2^{-O(t \log (s/\Delta))} \text{ fraction (under } \mu) \text{ positive queries}$

 ω : positions & contents of these Δ cells

good
$$y \mapsto \omega < \leq {s \choose \Delta} 2^{\Delta w} = 2^{O(\Delta \log \frac{s}{\Delta} + \Delta w)}$$
 possibilities

B: $(\geq 2^{-O(\Delta \log (s/\Delta) + \Delta w)})$ fraction (under v) good y) \mapsto the same ω cell-probe model: once ω is fixed,

A: the set of positive queries resolved by ω is fixed

 $f: X \times Y \to \{0,1\}$ distributions μ over X, ν over Y

f is 0.01-dense under $\mu \times \nu$

f(x,y) is answered with t(x,y) cell-probes: $\mathbf{E}_{\mu \times \nu}[t(x,y)] \le t$

f is 0.01-dense under $\mu \times \nu$

f(x,y) is answered with t(x,y) cell-probes: $\mathbf{E}_{\mu \times \nu}[t(x,y)] \le t$

fix database (column) $y \in Y$

f is 0.01-dense under $\mu \times \nu$

f(x,y) is answered with t(x,y) cell-probes: $\mathbf{E}_{\mu \times \nu}[t(x,y)] \le t$

fix database (column) $y \in Y$

set of positive queries: $X_y^+ = \{x \in X \mid f(x,y) = 1\}$

f is 0.01-dense under $\mu \times \nu$

f(x,y) is answered with t(x,y) cell-probes: $\mathbf{E}_{\mu \times \nu}[t(x,y)] \le t$

fix database (column) $y \in Y$

set of positive queries: $X_y^+ = \{x \in X \mid f(x,y) = 1\}$

distribution over positive queries induced by μ :

$$\mu_y^+(x) = \mu(x \mid X_y^+) = \Pr_{\boldsymbol{x} \sim \mu}[\boldsymbol{x} = x \mid f(\boldsymbol{x}, y) = 1]$$

f is 0.01-dense under $\mu \times \nu$

f(x,y) is answered with t(x,y) cell-probes: $\mathbf{E}_{\mu \times \nu}[t(x,y)] \le t$

fix database (column) $y \in Y$

set of positive queries: $X_y^+ = \{x \in X \mid f(x,y) = 1\}$

distribution over positive queries induced by μ :

$$\mu_y^+(x) = \mu(x \mid X_y^+) = \Pr_{\boldsymbol{x} \sim \mu}[\boldsymbol{x} = x \mid f(\boldsymbol{x}, y) = 1]$$

 $\exists Y_{\mathsf{good}} \subseteq Y \text{ s.t. } \nu(Y_{\mathsf{good}}) \geq 0.0025 \text{ and } \forall y \in Y_{\mathsf{good}}$:

- $\mu(X_y^+) \ge 0.005;$
- $\mathbf{E}_{\boldsymbol{x} \sim \mu_y^+}[t(\boldsymbol{x}, y)] \le 80000t.$

f is 0.01-dense under $\mu \times \nu$

f(x,y) is answered with t(x,y) cell-probes: $\mathbf{E}_{\mu \times \nu}[t(x,y)] \le t$

fix database (column) $y \in Y$

set of positive queries: $X_y^+ = \{x \in X \mid f(x,y) = 1\}$

distribution over positive queries induced by μ :

$$\mu_y^+(x) = \mu(x \mid X_y^+) = \Pr_{\boldsymbol{x} \sim \mu}[\boldsymbol{x} = x \mid f(\boldsymbol{x}, y) = 1]$$

 $\exists Y_{\mathsf{good}} \subseteq Y \text{ s.t. } \nu(Y_{\mathsf{good}}) \geq 0.0025 \text{ and } \forall y \in Y_{\mathsf{good}}$:

- $\quad \bullet \ \mu(X_y^+) \geq 0.005; \qquad \text{(large amount of positive queries)}$
- $\mathbf{E}_{\boldsymbol{x} \sim \mu_y^+}[t(\boldsymbol{x}, y)] \le 80000t.$

f is 0.01-dense under $\mu \times \nu$

f(x,y) is answered with t(x,y) cell-probes: $\mathbf{E}_{\mu \times \nu}[t(x,y)] \le t$

fix database (column) $y \in Y$

set of positive queries: $X_y^+ = \{x \in X \mid f(x,y) = 1\}$

distribution over positive queries induced by μ :

$$\mu_y^+(x) = \mu(x \mid X_y^+) = \Pr_{\boldsymbol{x} \sim \mu}[\boldsymbol{x} = x \mid f(\boldsymbol{x}, y) = 1]$$

 $\exists Y_{\mathsf{good}} \subseteq Y \text{ s.t. } \nu(Y_{\mathsf{good}}) \geq 0.0025 \text{ and } \forall y \in Y_{\mathsf{good}}$:

- $\mu(X_y^+) \ge 0.005;$ (large amount of positive queries)
- $\mathbf{E}_{\boldsymbol{x} \sim \mu_y^+}[t(\boldsymbol{x}, y)] \leq 80000t$. (bounded average cost over positive queries)

$$\exists Y_{\mathsf{good}} \subseteq Y \text{ s.t. } \nu(Y_{\mathsf{good}}) \geq 0.0025 \text{ and } \forall y \in Y_{\mathsf{good}}$$
:

- $\mu(X_y^+) \ge 0.005;$ (large amount of positive queries)

$$\exists Y_{\mathsf{good}} \subseteq Y \text{ s.t. } \nu(Y_{\mathsf{good}}) \geq 0.0025 \text{ and } \forall y \in Y_{\mathsf{good}}$$
:

- $\mu(X_y^+) \ge 0.005;$ (large amount of positive queries)
- $\mathbf{E}_{\boldsymbol{x} \sim \mu_y^+}[t(\boldsymbol{x},y)] \leq 80000t$. (bounded average cost over positive queries)

$$\exists Y_{\mathsf{good}} \subseteq Y \text{ s.t. } \nu(Y_{\mathsf{good}}) \geq 0.0025 \text{ and } \forall y \in Y_{\mathsf{good}}$$
:

- $\mu(X_y^+) \ge 0.005;$ (large amount of positive queries)
- $\mathbf{E}_{\boldsymbol{x} \sim \mu_y^+}[t(\boldsymbol{x}, y)] \leq 80000t$. (bounded average cost over positive queries)

$$\exists Y_{\mathsf{good}} \subseteq Y \text{ s.t. } \nu(Y_{\mathsf{good}}) \geq 0.0025 \text{ and } \forall y \in Y_{\mathsf{good}}$$
:

- $\mu(X_y^+) \ge 0.005;$ (large amount of positive queries)
- $\mathbf{E}_{\boldsymbol{x} \sim \mu_y^+}[t(\boldsymbol{x}, y)] \leq 80000t$. (bounded average cost over positive queries)

hypergraph with vertices [s] and hyperedges X_y^+

$$\exists Y_{\mathsf{good}} \subseteq Y \text{ s.t. } \nu(Y_{\mathsf{good}}) \geq 0.0025 \text{ and } \forall y \in Y_{\mathsf{good}}$$
:

- $\mu(X_y^+) \ge 0.005;$ (large amount of positive queries)
- $\mathbf{E}_{\boldsymbol{x} \sim \mu_y^+}[t(\boldsymbol{x}, y)] \leq 80000t$. (bounded average cost over positive queries)

hypergraph with vertices [s] and hyperedges X_y^+ average size of hyperedges $\leq 80000t$ (under μ_y^+)

$$\exists Y_{\mathsf{good}} \subseteq Y \text{ s.t. } \nu(Y_{\mathsf{good}}) \geq 0.0025 \text{ and } \forall y \in Y_{\mathsf{good}}$$
:

- $\mu(X_y^+) \ge 0.005;$ (large amount of positive queries)
- $\mathbf{E}_{\boldsymbol{x} \sim \mu_y^+}[t(\boldsymbol{x}, y)] \leq 80000t$. (bounded average cost over positive queries)

hypergraph with vertices [s] and hyperedges X_y^+ average size of hyperedges $\leq 80000t$ (under μ_y^+)

$$\exists Y_{\mathsf{good}} \subseteq Y \text{ s.t. } \nu(Y_{\mathsf{good}}) \geq 0.0025 \text{ and } \forall y \in Y_{\mathsf{good}}$$
:

- $\mu(X_u^+) \ge 0.005$; (large amount of positive queries)
- (bounded average cost • $\mathbf{E}_{\boldsymbol{x} \sim \mu_{u}^{+}}[t(\boldsymbol{x}, y)] \leq 80000t.$ over positive queries)

hypergraph with vertices [s] and hyperedges X_u^+ average size of hyperedges $\leq 80000t$ (under μ_u^+)

probabilistic $\forall \Delta \geq 320000t$, $\exists \text{ sub-hypergraph induced by } \Delta \text{ vertices of measure } \frac{1}{2} \left(\frac{\Delta}{2s}\right)^{80000t} \geq 2^{-O(t \log \frac{s}{\Delta})} \text{ (under } \mu_y^+ \text{)}$

$$\exists Y_{\mathsf{good}} \subseteq Y \text{ s.t. } \nu(Y_{\mathsf{good}}) \geq 0.0025 \text{ and } \forall y \in Y_{\mathsf{good}}$$
:

- $\mu(X_y^+) \ge 0.005;$ (large amount of positive queries)
- $\mathbf{E}_{\boldsymbol{x} \sim \mu_y^+}[t(\boldsymbol{x}, y)] \leq 80000t$. (bounded average cost over positive queries)

$$\exists Y_{\mathsf{good}} \subseteq Y \text{ s.t. } \nu(Y_{\mathsf{good}}) \geq 0.0025 \text{ and } \forall y \in Y_{\mathsf{good}}$$
:

- $\mu(X_y^+) \ge 0.005;$ (large amount of positive queries)
- $\mathbf{E}_{\boldsymbol{x} \sim \mu_y^+}[t(\boldsymbol{x}, y)] \leq 80000t$. (bounded average cost over positive queries)

 $\forall \Delta \geq 320000t$:

 \exists Δ cells resolving $0.0025(\Delta/2s)^{80000t}=2^{-O(t\log(s/\Delta))}$ fraction of positive queries (under μ)

$$\exists Y_{\mathsf{good}} \subseteq Y \text{ s.t. } \nu(Y_{\mathsf{good}}) \geq 0.0025 \text{ and } \forall y \in Y_{\mathsf{good}}$$
:

- $\mu(X_y^+) \ge 0.005;$ (large amount of positive queries)
- $\mathbf{E}_{\boldsymbol{x} \sim \mu_y^+}[t(\boldsymbol{x}, y)] \leq 80000t$. (bounded average cost over positive queries)

 $\forall \Delta \geq 320000t$:

 \exists Δ cells resolving $0.0025(\Delta/2s)^{80000t}=2^{-O(t\log(s/\Delta))}$ fraction of positive queries (under μ)

good $y \mapsto \omega$ resolving $2^{-O(t \log (s/\Delta))}$ positive queries

A New Richness Lemma

 $f: X \times Y \to \{0,1\}$ distributions μ over X, ν over Y

New Richness lemma

```
f \text{ is } 0.01\text{-dense under } \mu \times \nu \\ f \text{ has average-case} \end{cases} \qquad \forall \Delta \in [320000t,s], \\ f \text{ has } 1\text{-rectangle } A \times B \text{ with} \\ (s,w,t)\text{-cell-probing scheme} \\ \text{under } \mu \times \nu \end{cases} \qquad \begin{cases} \mu(A) \geq 2^{-O(t \log (s/\Delta))} \\ \nu(B) \geq 2^{-O(\Delta \log (s/\Delta) + \Delta w)} \end{cases}
```

data structure problem $f: X \times Y \rightarrow \{0, 1\}$

data structure problem $f: X \times Y \rightarrow \{0, 1\}$

 $Y = Z^n$: database $y=(y_1,...,y_n)$ where $y_i \in Z$

data structure problem $f: X \times Y \rightarrow \{0, 1\}$

 $Y = Z^n$: database $y=(y_1,...,y_n)$ where $y_i \in Z$

point-wise function: $g: X \times Z \rightarrow \{0, 1\}$

$$f(x,y) = \bigwedge_{i=1}^{n} g(x,y_i)$$

data structure problem $f: X \times Y \rightarrow \{0, 1\}$

 $Y = Z^n$: database $y=(y_1,...,y_n)$ where $y_i \in Z$

point-wise function: $g: X \times Z \rightarrow \{0, 1\}$

$$f(x,y) = \bigwedge_{i=1}^{n} g(x,y_i)$$

 (γ, λ) -ANN: X = Z is the metric space

$$g(x, y_i) = \begin{cases} 1 & \text{dist}(x, y_i) > \gamma \lambda \\ 0 & \text{dist}(x, y_i) \le \lambda \\ * & \text{otherwise} \end{cases}$$

data structure problem $f: X \times Y \rightarrow \{0, 1\}$

 $Y = Z^n$: database $y=(y_1,...,y_n)$ where $y_i \in Z$

point-wise function: $g: X \times Z \rightarrow \{0, 1\}$

$$f(x,y) = \bigwedge_{i=1}^{n} g(x,y_i)$$

 (γ, λ) -ANN: X = Z is the metric space

$$g(x, y_i) = \begin{cases} 1 & \text{dist}(x, y_i) > \gamma \lambda \\ 0 & \text{dist}(x, y_i) \le \lambda \\ * & \text{otherwise} \end{cases}$$

Examples: partial match, membership, range query, ...

data structure problem $f: X \times Z^n \to \{0,1\}$

$$f(x,y) = \bigwedge_{i=1}^{n} g(x,y_i)$$

with point-wise function $\,g:X\times Z\to\{0,1\}\,$

data structure problem $f: X \times Z^n \to \{0,1\}$

$$f(x,y) = \bigwedge_{i=1}^{n} g(x,y_i)$$

with point-wise function $\,g:X\times Z\to\{0,1\}\,$

distributions μ over X, ν over Z, ν^n over $Y = Z^n$

data structure problem $f: X \times Z^n \to \{0,1\}$

$$f(x,y) = \bigwedge_{i=1}^{n} g(x,y_i)$$

with point-wise function $g: X \times Z \rightarrow \{0,1\}$

distributions μ over X, ν over Z, ν^n over $Y = Z^n$

Theorem

Assume:

- density of 0s in g is $\leq 0.99/n$ under $\mu \times \nu$;
- g has no 1-rectangle $A \times B$ with $\mu(A) \ge 1/\Phi$ and $\nu(B) \ge 1/\Psi$.

If f has an average-case (s,w,t)-cell-probing scheme under $\mu \times v^n$

$$t = \Omega\left(\frac{\log \Phi}{\log \frac{sw}{n \log \Psi}}\right) \quad \text{or} \quad t = \Omega\left(\frac{n \log \Psi}{w + \log s}\right)$$

$$f(x,y) = \bigwedge_{i=1}^{n} g(x,y_i)$$

Assume:

- density of 0s in g is $\leq 0.99/n$ under $\mu \times \nu$;
- g has no 1-rectangle $A \times B$ with $\mu(A) \ge 1/\Phi$ and $\nu(B) \ge 1/\Psi$.

$$f(x,y) = \bigwedge_{i=1}^{m} g(x,y_i)$$

Assume:

f is 0.01-dense • density of 0s in g is $\leq 0.99/n$ under $\mu \times \nu$; under $\mu \times \nu^n$

• g has no 1-rectangle $A \times B$ with $\mu(A) \ge 1/\Phi$ and $\nu(B) \ge 1/\Psi$.

$$f(x,y) = \bigwedge_{i=1}^{n} g(x,y_i)$$

- union bound f is 0.01-dense • density of 0s in g is $\leq 0.99/n$ under $\mu \times \nu$; under $\mu \times \nu^n$
- g has no 1-rectangle $A \times B$ with $\mu(A) \ge 1/\Phi$ and $\nu(B) \ge 1/\Psi$.

New Richness lemma

f is 0.01-dense under $\mu \times \nu^n$ f has average-case (s, w, t)cell-probing scheme under $\mu \times v^n$

 $\forall \Delta \in [320000t,s],$

has 1-rectangle $A \times B$ ' with $\begin{cases} \mu(A) \ge 2^{-O(t \log (s/\Delta))} \\ \nu^n(B') \ge 2^{-O(\Delta \log (s/\Delta) + \Delta w)} \end{cases}$

$$f(x,y) = \bigwedge_{i=1}^{n} g(x,y_i)$$

- union bound • density of 0s in g is $\leq 0.99/n$ under $\mu \times \nu$; under $\mu \times \nu^n$
- g has no 1-rectangle $A \times B$ with $\mu(A) \ge 1/\Phi$ and $\nu(B) \ge 1/\Psi$.

New Richness lemma

f is 0.01-dense under $\mu \times \nu^n$ f has average-case (s, w, t)cell-probing scheme under $\mu \times \nu^n$

 $\forall \Delta \in [320000t,s],$

has 1-rectangle $A \times B$ ' with $\begin{cases} \mu(A) \ge 2^{-O(t \log (s/\Delta))} \\ \nu^n(B') \ge 2^{-O(\Delta \log (s/\Delta) + \Delta w)} \end{cases}$

f is 0.01-dense

choose
$$\Delta = O\left(\frac{n\log\Psi}{w}\right) \cap \Omega\left(\frac{n\log\Psi}{w+\log s}\right)$$
 to satisfy $v^n(B') \ge 2^{-O(\Delta\log(s/\Delta) + \Delta w)} > 1/\Psi^n$

$$f(x,y) = \bigwedge_{i=1}^{n} g(x,y_i)$$

- union bound f is 0.01-dense • density of 0s in g is $\leq 0.99/n$ under $\mu \times \nu$; under $\mu \times \nu^n$
- g has no 1-rectangle $A \times B$ with $\mu(A) \ge 1/\Phi$ and $\nu(B) \ge 1/\Psi$.

New Richness lemma $\forall \Delta \in [320000t,s],$ f is 0.01-dense under $\mu \times \nu^n$ f has average-case (s, w, t)has 1-rectangle $A \times B$ ' with $\begin{cases} \mu(A) \ge 2^{-O(t \log (s/\Delta))} \\ \nu^n(B') \ge 2^{-O(\Delta \log (s/\Delta) + \Delta w)} \end{cases}$ cell-probing scheme under $\mu \times \nu^n$

choose
$$\Delta = O\left(\frac{n\log\Psi}{w}\right) \cap \Omega\left(\frac{n\log\Psi}{w+\log s}\right)$$
 to satisfy $v^n(B') \ge 2^{-O(\Delta\log(s/\Delta) + \Delta w)} > 1/\Psi^n$

case 1: Δ < 320000t

$$f(x,y) = \bigwedge_{i=1}^{n} g(x,y_i)$$

- union bound • density of 0s in g is $\leq 0.99/n$ under $\mu \times \nu$; under $\mu \times \nu^n$
- g has no 1-rectangle $A \times B$ with $\mu(A) \ge 1/\Phi$ and $\nu(B) \ge 1/\Psi$.

New Richness lemma

f is 0.01-dense under $\mu \times \nu^n$ f has average-case (s, w, t)cell-probing scheme under $\mu \times \nu^n$

 $\forall \Delta \in [320000t,s],$

has 1-rectangle $A \times B$ ' with $\begin{cases} \mu(A) \ge 2^{-O(t \log (s/\Delta))} \\ \nu^n(B') \ge 2^{-O(\Delta \log (s/\Delta) + \Delta w)} \end{cases}$

f is 0.01-dense

choose
$$\Delta = O\left(\frac{n\log\Psi}{w}\right) \cap \Omega\left(\frac{n\log\Psi}{w+\log s}\right)$$
 to satisfy $v^n(B') \geq 2^{-O(\Delta\log(s/\Delta) + \Delta w)} > 1/\Psi^n$ case $1: \Delta < 320000t$ $\Longrightarrow t = \Omega\left(\frac{n\log\Psi}{w+\log s}\right)$

$$f(x,y) = \bigwedge_{i=1}^{n} g(x,y_i)$$

- union bound f is 0.01-dense • density of 0s in g is $\leq 0.99/n$ under $\mu \times \nu$; under $\mu \times \nu^n$
- g has no 1-rectangle $A \times B$ with $\mu(A) \ge 1/\Phi$ and $\nu(B) \ge 1/\Psi$.

New Richness lemma

f is 0.01-dense under $\mu \times \nu^n$ f has average-case (s, w, t)cell-probing scheme under $\mu \times \nu^n$

 $\forall \Delta \in [320000t,s],$

has 1-rectangle $A \times B$ ' with $\begin{cases} \mu(A) \ge 2^{-O(t \log (s/\Delta))} \\ \nu^n(B') \ge 2^{-O(\Delta \log (s/\Delta) + \Delta w)} \end{cases}$

choose
$$\Delta = O\left(\frac{n\log\Psi}{w}\right) \cap \Omega\left(\frac{n\log\Psi}{w+\log s}\right)$$
 to satisfy $v^n(B') \geq 2^{-O(\Delta\log\left(s/\Delta\right) + \Delta w)} > 1/\Psi^n$ case $1: \Delta < 320000t \implies t = \Omega\left(\frac{n\log\Psi}{w+\log s}\right)$

case 2: otherwise

$$f(x,y) = \bigwedge_{i=1}^{n} g(x,y_i)$$

- density of 0s in g is $\leq 0.99/n$ under $\mu \times \nu$; under $\mu \times \nu^n$
- g has no 1-rectangle $A \times B$ with $\mu(A) \ge 1/\Phi$ and $\nu(B) \ge 1/\Psi$.

New Richness lemma

f is 0.01-dense under $\mu \times \nu^n$ f has average-case (s,w,t)-cell-probing scheme under $\mu \times \nu^n$

$\forall \Delta \in [320000t,s],$

has 1-rectangle $A \times B$ ' with $\begin{cases} \mu(A) \ge 2^{-O(t \log (s/\Delta))} \\ \nu^n(B') \ge 2^{-O(\Delta \log (s/\Delta) + \Delta w)} \end{cases}$

f is 0.01-dense

choose
$$\Delta = O\left(\frac{n\log\Psi}{w}\right) \cap \Omega\left(\frac{n\log\Psi}{w+\log s}\right)$$
 to satisfy $v^n(B') \ge 2^{-O(\Delta\log(s/\Delta) + \Delta w)} > 1/\Psi^n$ case $1: \Delta < 320000t \implies t = \Omega\left(\frac{n\log\Psi}{w+\log s}\right)$

case 2: otherwise $1/\Phi > \mu(A) \ge 2^{-O(t \log (s/\Delta))}$

$$f(x,y) = \bigwedge_{i=1}^{n} g(x,y_i)$$

- f is 0.01-dense • density of 0s in g is $\leq 0.99/n$ under $\mu \times \nu$; under $\mu \times \nu^n$
- g has no 1-rectangle $A \times B$ with $\mu(A) \ge 1/\Phi$ and $\nu(B) \ge 1/\Psi$.

New Richness lemma

f is 0.01-dense under $\mu \times \nu^n$ f has average-case (s, w, t)-

cell-probing scheme under $\mu \times \nu^n$

$\forall \Delta \in [320000t,s],$

has 1-rectangle $A \times B$ ' with

$$\begin{cases} \mu(A) \ge 2^{-O(t \log (s/\Delta))} \\ \nu^n(B') \ge 2^{-O(\Delta \log (s/\Delta) + \Delta w)} \end{cases}$$

choose
$$\Delta = O\left(\frac{n\log\Psi}{w}\right)\cap\Omega\left(\frac{n\log\Psi}{w+\log s}\right)$$
 to satisfy

$$\nu^n(B') \ge 2^{-O(\Delta \log (s/\Delta) + \Delta w)} > 1/\Psi^n$$

case 1:
$$\Delta < 320000t$$
 $\Rightarrow t = \Omega\left(\frac{n\log\Psi}{w + \log s}\right)$

case 2: otherwise
$$1/\Phi > \mu(A) \ge 2^{-O(t \log (s/\Delta))}$$
 $t = \Omega\left(\frac{\log \Phi}{\log \frac{sw}{n \log \Psi}}\right)$

data structure problem $f: X \times Z^n \to \{0,1\}$

$$f(x,y) = \bigwedge_{i=1}^{n} g(x,y_i)$$

with point-wise function $g: X \times Z \rightarrow \{0,1\}$

distributions μ over X, ν over Z, ν^n over $Y = Z^n$

Theorem

Assume:

- density of 0s in g is $\leq 0.99/n$ under $\mu \times \nu$;
- g has no 1-rectangle $A \times B$ with $\mu(A) \ge 1/\Phi$ and $\nu(B) \ge 1/\Psi$.

If f has an average-case (s,w,t)-cell-probing scheme under $\mu \times v^n$

$$t = \Omega\left(\frac{\log \Phi}{\log \frac{sw}{n \log \Psi}}\right) \quad \text{or} \quad t = \Omega\left(\frac{n \log \Psi}{w + \log s}\right)$$

$$(\gamma, \lambda)$$
-ANN: $f(x, y) = \bigwedge_{i=1}^{n} g(x, y_i)$

$$g(x, y_i) = \begin{cases} 1 & \text{dist}(x, y_i) > \gamma \lambda \\ 0 & \text{dist}(x, y_i) \le \lambda \\ * & \text{otherwise} \end{cases}$$

Theorem

Assume:

- density of 0s in g is $\leq 0.99/n$ under $\mu \times \mu$;
- g has no 1-rectangle $A \times B$ with $\mu(A) \ge 1/\Phi$ and $\mu(B) \ge 1/\Psi$.

If f has an average-case (s,w,t)-cell-probing scheme under $\mu \times \mu^n$

$$t = \Omega\left(\frac{\log \Phi}{\log \frac{sw}{n \log \Psi}}\right) \quad \text{or} \quad t = \Omega\left(\frac{n \log \Psi}{w + \log s}\right)$$

$$(\gamma, \lambda)$$
-ANN: $f(x, y) = \bigwedge_{i=1}^{n} g(x, y_i)$

$$g(x, y_i) = \begin{cases} 1 & \text{dist}(x, y_i) > \gamma \lambda \\ 0 & \text{dist}(x, y_i) \le \lambda \\ * & \text{otherwise} \end{cases}$$

Theorem

Assume:

- density of 0s in g is $\leq 0.99/n$ under $\mu \times \mu$; (weakly independence)
- g has no 1-rectangle $A \times B$ with $\mu(A) \ge 1/\Phi$ and $\mu(B) \ge 1/\Psi$.

If f has an average-case (s,w,t)-cell-probing scheme under $\mu \times \mu^n$

$$t = \Omega\left(\frac{\log \Phi}{\log \frac{sw}{n \log \Psi}}\right) \quad \text{or} \quad t = \Omega\left(\frac{n \log \Psi}{w + \log s}\right)$$

$$(\gamma, \lambda)$$
-ANN: $f(x, y) = \bigwedge_{i=1}^{n} g(x, y_i)$

$$g(x, y_i) = \begin{cases} 1 & \text{dist}(x, y_i) > \gamma \lambda \\ 0 & \text{dist}(x, y_i) \le \lambda \\ * & \text{otherwise} \end{cases}$$

Theorem

- density of 0s in g is $\leq 0.99/n$ under $\mu \times \mu$; (weakly independence)
- g has no 1-rectangle $A \times B$ with $\mu(A) \ge 1/\Phi$ and $\mu(B) \ge 1/\Psi$. (Φ, Ψ) -expanding) If f has an average-case (s, w, t)-cell-probing scheme under $\mu \times \mu^n$

$$t = \Omega\left(\frac{\log \Phi}{\log \frac{sw}{n \log \Psi}}\right) \quad \text{or} \quad t = \Omega\left(\frac{n \log \Psi}{w + \log s}\right)$$

$$(\gamma, \lambda)$$
-ANN: $f(x, y) = \bigwedge_{i=1}^{n} g(x, y_i)$

$$g(x, y_i) = \begin{cases} 1 & \text{dist}(x, y_i) > \gamma \lambda \\ 0 & \text{dist}(x, y_i) \le \lambda \\ * & \text{otherwise} \end{cases}$$

- density of 0s in g is $\leq 0.99/n$ under $\mu \times \mu$;
- g has no 1-rectangle $A \times B$ with $\mu(A) \ge 1/\Phi$ and $\mu(B) \ge 1/\Psi$.

$$(\gamma, \lambda)$$
-ANN: $f(x, y) = \bigwedge_{i=1}^{n} g(x, y_i)$

$$g(x, y_i) = \begin{cases} 1 & \text{dist}(x, y_i) > \gamma \lambda \\ 0 & \text{dist}(x, y_i) \le \lambda \\ * & \text{otherwise} \end{cases}$$

- density of 0s in g is $\leq 0.99/n$ under $\mu \times \mu$;
- g has no 1-rectangle $A \times B$ with $\mu(A) \ge 1/\Phi$ and $\mu(B) \ge 1/\Psi$.
- $\gamma\lambda$ -neighborhoods are weakly independent under μ : $\mu(N_{\gamma\lambda}(x)) < 0.99/n$ for $\forall x \in X$

$$(\gamma, \lambda)$$
-ANN: $f(x, y) = \bigwedge_{i=1}^{n} g(x, y_i)$

$$g(x, y_i) = \begin{cases} 1 & \text{dist}(x, y_i) > \gamma \lambda \\ 0 & \text{dist}(x, y_i) \le \lambda \\ * & \text{otherwise} \end{cases}$$

- density of 0s in g is $\leq 0.99/n$ under $\mu \times \mu$;
- g has no 1-rectangle $A \times B$ with $\mu(A) \ge 1/\Phi$ and $\mu(B) \ge 1/\Psi$.
- $\gamma\lambda$ -neighborhoods are weakly independent under μ : $\mu(N_{\gamma\lambda}(x)) < 0.99/n \text{ for } \forall x \in X$
 - λ -neighborhoods are (Φ, Ψ) -expanding under μ : $\forall A \subseteq X$, $\mu(A) \ge 1/\Phi \Rightarrow \mu(N_{\lambda}(A)) \ge 1-1/\Psi$

metric space (X,dist), distribution μ over X:

- $\gamma\lambda$ -neighborhoods are weakly independent under μ : $\mu(N_{\gamma\lambda}(x)) < 0.99/n$ for $\forall x \in X$
- λ -neighborhoods are (Φ, Ψ) -expanding under μ : $\forall A \subseteq X$, $\mu(A) \ge 1/\Phi \Rightarrow \mu(N_{\lambda}(A)) \ge 1-1/\Psi$

Theorem

Assume:

- $\gamma\lambda$ -neighborhoods are weakly independent under μ ;
- λ -neighborhoods are (Φ, Ψ) -expanding under μ .

If (γ,λ) -ANN has avg.-case (s,w,t)-cell-probing scheme under $\mu \times \nu^n$

$$t = \Omega\left(\frac{\log \Phi}{\log \frac{sw}{n \log \Psi}}\right) \quad \text{or} \quad t = \Omega\left(\frac{n \log \Psi}{w + \log s}\right)$$

choose
$$\gamma \lambda = \frac{d}{2} - \sqrt{2d \ln(2n)}$$

choose
$$\gamma \lambda = \frac{d}{2} - \sqrt{2d \ln(2n)}$$

• $\gamma\lambda$ -neighborhoods are weakly independent under μ : $\mu(N_{\gamma\lambda}(x)) < 0.99/n$ for $\forall x \in X$

choose
$$\gamma \lambda = \frac{d}{2} - \sqrt{2d \ln(2n)}$$

• $\gamma\lambda$ -neighborhoods are weakly independent under μ : $\mu(N_{\gamma\lambda}(x)) < 0.99/n$ for $\forall x \in X$

Harper's Isoperimetric inequality:

$$\forall A \subseteq X, \ \mu(A) \ge \mu(N_r(\underline{\mathbf{0}})) \Longrightarrow \mu(N_{\lambda}(A)) \ge \mu(N_{r+\lambda}(\underline{\mathbf{0}}))$$

"Hamming balls have the smallest vertex-expansion."

choose
$$\gamma \lambda = \frac{d}{2} - \sqrt{2d \ln(2n)}$$

• $\gamma\lambda$ -neighborhoods are weakly independent under μ : $\mu(N_{\gamma\lambda}(x)) < 0.99/n$ for $\forall x \in X$

Harper's Isoperimetric inequality:

$$\forall A \subseteq X, \ \mu(A) \ge \mu(N_r(\underline{\mathbf{0}})) \Longrightarrow \mu(N_{\lambda}(A)) \ge \mu(N_{r+\lambda}(\underline{\mathbf{0}}))$$

"Hamming balls have the smallest vertex-expansion."

• λ -neighborhoods are $(2^{\Theta(d)}, 2^{\Theta(d)})$ -expanding under μ : $\forall A \subseteq X$, $\mu(A) \ge 2^{-\Theta(d)} \Rightarrow \mu(N_{\lambda}(A)) \ge 1-2^{-\Theta(d)}$

choose
$$\gamma \lambda = \frac{d}{2} - \sqrt{2d \ln(2n)}$$

• $\gamma\lambda$ -neighborhoods are weakly independent under μ : $\mu(N_{\gamma\lambda}(x)) < 0.99/n$ for $\forall x \in X$

Harper's Isoperimetric inequality:

$$\forall A \subseteq X, \ \mu(A) \ge \mu(N_r(\underline{\mathbf{0}})) \Rightarrow \mu(N_{\lambda}(A)) \ge \mu(N_{r+\lambda}(\underline{\mathbf{0}}))$$

"Hamming balls have the smallest vertex-expansion."

• λ -neighborhoods are $(2^{\Theta(d)}, 2^{\Theta(d)})$ -expanding under μ : $\forall A \subseteq X$, $\mu(A) \ge 2^{-\Theta(d)} \Rightarrow \mu(N_{\lambda}(A)) \ge 1-2^{-\Theta(d)}$

$$t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right) \quad \text{or} \quad t = \Omega\left(\frac{nd}{w + \log s}\right)$$

for one-dimensional nearest neighbor search (predecessor search)

for one-dimensional nearest neighbor search (predecessor search)

assuming the data structure is the sorted table:

for one-dimensional nearest neighbor search (predecessor search)

assuming the data structure is the sorted table:

for one-dimensional nearest neighbor search (predecessor search)

assuming the data structure is the sorted table:

certifies the nearest neighbor of "8.5"

Lower Bounds for Hamming NNS

Hamming space $X = \{0,1\}^d$ database $y \in X^n$

time: t cell-probes;

space: s cells, each of w bits

	deterministic	randomized
exact	average-case: $t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right)$	average-case: $t = \Omega\left(\frac{d}{\log s}\right) \text{[Barkol Rabani 2000]}$ worst-case: $t = \Omega\left(\frac{d}{\log\frac{sw}{n}}\right) \text{[Pătraşcu Thorup 2006]}$
approx.	average-case: $t = \Omega\left(\frac{d}{\log\frac{sw}{nd}}\right)$	worst-case, search problem: $t = \Theta\left(\frac{\log\log d}{\log\log\log d}\right) \text{ for } s = \operatorname{poly}(n)$ [Chakrabarti Regev 2004] $\operatorname{average-case:} t = \Omega\left(\frac{\log n}{\log\frac{sw}{n}}\right)$ [Panigrahy Talwar Wieder 2008, 2010]

Thank you!