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• ED[t(x, y)] ≤ t

• Monte Carlo randomized algorithm: 
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• In data-dependent LSH [Andoni Razenshteyn 2015]:      
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⇤ otherwise

Examples:  partial match, membership, range query, ...
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Certificates in Data Structures

for one-dimensional nearest neighbor search
(predecessor search)

assuming the data structure is the sorted table:

certifies the nearest neighbor of  “8.5”

certificate: the cells whose contents uniquely identify the answer



deterministic randomized

exact

approx.

Lower Bounds for Hamming NNS
Hamming space X = {0, 1}d database y 2 Xn

t = ⌦
⇣

d
log s

⌘

t = ⌦
⇣

d
log

sw
n

⌘

t = ⌦
⇣

logn
log

sw
n

⌘

[Barkol Rabani 2000]

[Pătraşcu Thorup 2006]
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for s = poly(n)
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